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Chapter 15

Behavioral Finance and

Asset Pricing

This chapter considers asset pricing when investors’asset demands incorporate

some elements of irrationality. Irrationality can occur because investors’pref-

erences are subject to psychological biases or because investors make systematic

errors in judging the probability distribution of asset returns. Incorporating

irrationality is a departure from von Neumann-Morgenstern expected utility

maximization and the standard or classical economic approach. A model that

incorporates some form of irrationality is unlikely to be useful for drawing nor-

mative conclusions regarding an individual’s asset choice. Rather, such a model

attempts to provide a positive or descriptive theory of how individuals actually

behave. For this reason, the approach is referred to as “behavioral finance.”

There is both experimental evidence as well as conventional empirical re-

search documenting investor behavior that is inconsistent with von Neumann-

Morgenstern expected utility theory. Numerous forms of cognitive biases and

judgement errors appear to characterize the preferences of at least some indi-
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viduals. Surveys by (Hirshleifer 2001), (Daniel, Hirshleifer, and Teoh 2001),

and (Barberis and Thaler 2002) describe the evidence for these behavioral phe-

nomena. However, to date there have been relatively few models that analyze

how irrationality might affect equilibrium asset prices. This chapter examines

two recent behavioral asset pricing models.

The first is an intertemporal consumption and portfolio choice model by

Nicholas Barberis, Ming Huang, and Jesus Santos (Barberis, Huang, and Santos

2001) that incorporates two types of biases that are prominent in the behavioral

finance literature. They are loss aversion and the house money effect. These

biases fall within the general category of prospect theory. Prospect theory de-

viates from von Neumann-Morgenstern expected utility maximization because

investor utility is a function of recent changes in, rather than simply the cur-

rent level of, financial wealth. In particular, investor utility characterized by

prospect theory may be more sensitive to recent losses than recent gains in

financial wealth, this phenomenon being referred to as loss aversion. More-

over, losses following previous losses create more disutility than losses following

previous gains. After a run-up in asset prices, the investor is less risk averse

because subsequent losses would be “cushioned”by the previous gains. This is

the so-called house money effect.1

An implication of this intertemporal variation in risk aversion is that after a

substantial rise in asset prices, lower investor risk aversion can drive prices even

higher. Hence, asset prices display volatility that is greater than that predicted

by observed changes in fundamentals, such as changes in dividends. This also

generates predictability in asset returns. A substantial recent fall (rise) in asset

prices increases (decreases) risk aversion and expected asset returns. It can also

1This expression derives from the psychological misperception that a gambler’s (unex-
pected) winnings are the casino house’s money. The gambler views these winnings as different
from his initial wealth upon entering the casino. Hence, the gambler is willing to bet more
aggressively in the future because if the house’s money is lost, the disutility of this loss will
be small relative to the disutility of losing the same amount of his initial wealth.
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imply a high equity risk premium because the “excess”volatility in stock prices

leads loss-averse investors to demand a relatively high average rate of return on

stocks.

Prospect theory assumes that investors are overly concerned with changes in

financial wealth measured against some reference points, such as profits or losses

measured from the times when assets were first purchased. They care about

these holding period gains or losses more than would be justified by their effects

on consumption, and this influences their risk-taking behavior. This psychologi-

cal concept was advanced by Daniel Kahneman and Amos Tversky (Kahneman

and Tversky 1979) and is based primarily on experimental evidence.2 For

example, Richard Thaler and Eric Johnson (Thaler and Johnson 1990) find

that individuals faced with a sequence of gambles are more willing to take risk

if they have made gains from previous gambles, evidence consistent with the

house money effect. However, in a recent study of the behavior of traders of

the Chicago Board of Trade’s Treasury bond futures, Joshua Coval and Tyler

Shumway (Coval and Shumway 2003) find evidence consistent with loss aversion

but not the house money effect.

The second model presented in this chapter examines how equilibrium asset

prices are affected when some investors are rational but others suffer from sys-

tematic optimism or pessimism. Leonid Kogan, Stephen Ross, Jiang Wang, and

Mark Westerfied (Kogan, Ross, Wang, and Westerfield 2006) construct a simple

endowment economy where rational and irrational investors are identical except

that the irrational investors systematically misperceive the expected growth rate

of the aggregate dividend process. Interestingly, it is shown that this economy

can be transformed into one where the irrational traders can be viewed as acting

rationally but their utilities are state dependent. This transformation of the

problem allows it to be solved using standard techniques.

2Daniel Kahneman was awarded the Nobel prize in economics in 2002.
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Kogan, Ross, Wang, and Westerfield’s general equilibrium model shows that

investors having irrational beliefs regarding the economy’s fundamentals may

not necessarily lose wealth to rational investors and be driven out of the asset

market.3 Moreover, in those instances where irrational individuals do lose

wealth relative to the rational individuals, so that they do not survive in the long

run, their trading behavior can significantly affect asset prices for substantial

periods of time.

We now turn to the Barberis, Huang, and Santos model, which generalizes

a standard consumption and portfolio choice problem to incorporate aspects of

prospect theory.

15.1 The Effects of Psychological Biases on As-

set Prices

The Barberis, Huang, and Santos model is based on the following assumptions.

15.1.1 Assumptions

In the discussion that follows, the model economy has the following character-

istics.

Technology

A discrete-time endowment economy is assumed. The risky asset (or a port-

folio of all risky assets) pays a stream of dividends in the form of perishable

output. Denote the date t amount of this dividend as Dt. In the Economy I

version of the Barberis, Huang, and Santos model, it is assumed that aggregate

consumption equals dividends. This is the standard Lucas economy assumption

3This result was shown by Bradford De Long, Andrei Shleifer, Lawrence Summers, and
Robert Waldmann (DeLong, Shleifer, Summers, and Waldmann 1991) in a partial equilibrium
model.
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(Lucas 1978). However, in the Economy II version of their model, which will be

the focus of our analysis, the risky asset’s dividends are distinct from aggregate

consumption due to the assumed existence of nonfinancial, or labor, income.4

Recall that we studied this labor income extension of the standard Lucas econ-

omy in Chapter 6. Nonfinancial wealth can be interpreted as human capital

and its dividend as labor income. Thus, in equilibrium, aggregate consumption,

Ct, equals dividends, Dt, plus nonfinancial income, Yt, because both dividends

and nonfinancial income are assumed to be perishable. Aggregate consumption

and dividends are assumed to follow the joint lognormal process

ln
(
Ct+1/Ct

)
= gC + σCηt+1 (15.1)

ln (Dt+1/Dt) = gD + σDεt+1

where the error terms are serially uncorrelated and distributed as

 ηt

εt

 ˜N


 0

0

 ,

 1 ρ

ρ 1


 (15.2)

The return on the risky asset from date t to date t+ 1 is denoted Rt+1. A one-

period risk-free investment is assumed to be in zero net supply, and its return

from date t to date t + 1 is denoted Rf,t.5 The equilibrium value for Rf,t is

derived next.

Preferences

4Note that in a standard endowment economy, consumption and dividends are perfectly
correlated since they equal each other in equilibrium. Empirically, it is obvious that aggre-
gate consumption does not equal, nor is perfectly correlated with, aggregate stock dividends.
Hence, to make the model more empirically relevant, the Economy II version of the model
introduces nonfinancial income, which avoids the implication of perfect correlation.

5Since the risk-free asset is in zero net supply, the representative individual’s equilibrium
holding of this asset is zero. Similar to the case of the Cox, Ingersoll, and Ross model
presented in Chapter 13, Rf,t is interpreted as the shadow riskless return.
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Representative, infinitely lived individuals maximize lifetime utility of the

form

E0

[ ∞∑
t=0

(
δt
Cγt
γ

+ btδ
t+1v (Xt+1, wt, zt)

)]
(15.3)

where Ct is the individual’s consumption at date t, γ < 1, and δ is a time

discount factor. wt denotes the number of shares of the risky asset held by

the individual at date t. Xt+1 is defined as the total excess return or gain

that the individual earned from holding the risky asset between date t and date

t + 1. Specifically, this risky-asset gain is assumed to be measured relative to

the alternative of holding wealth in the risk-free asset and is given by

Xt+1 ≡ wt (Rt+1 −Rf,t) (15.4)

zt is a measure of the individual’s prior gains as a fraction of wt. zt < (>) 1

denotes a situation in which the investor has earned prior gains (losses) on the

risky asset. The prior gain factor, zt, is assumed to follow the process

zt = (1− η) + ηzt−1
R

Rt
(15.5)

where 0 ≤ η ≤ 1 and R is a parameter, approximately equal to the average

risky-asset return, that makes the steady state value of zt equal 1. If η = 0, zt

= 1 for all t. At the other extreme, when η = 1, zt is smaller than zt−1when

risky-asset returns were relatively high last period, Rt > R. Conversely, when

η = 1 but Rt < R, zt is larger than zt−1. For intermediate cases of 0 < η < 1, zt

adjusts partially to prior asset returns. In general, the greater η is, the longer

the investor’s memory in measuring prior gains from the risky asset.

The function v (·) characterizes the prospect theory effect of risky-asset gains
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on utility.6 For the case of zt = 1 (no prior gains or losses), this function displays

pure loss aversion:

v (Xt+1, wt, 1) =

 Xt+1 if Xt+1 ≥ 0

λXt+1 if Xt+1 < 0
(15.6)

where λ > 1. Hence, ceteris paribus, losses have a disproportionately bigger

impact on utility. When zt 6= 1, the function v (·) reflects prospect theory’s

house money effect. In the case of prior gains (zt ≤ 1), the function takes the

form

v (Xt+1, wt, zt) =

 Xt+1 if Rt+1 ≥ ztRf,t

Xt+1 + (λ− 1)wt (Rt+1 − ztRf,t) if Rt+1 < ztRf,t

(15.7)

The interpretation of this function is that when a return exceeds the cushion

built by prior gains, that is, Rt+1 ≥ ztRf,t, it affects utility one-for-one. How-

ever, when the gain is less than the amount of prior gains, Rt+1 < ztRf,t, it

has a greater than one-for-one impact on disutility. In the case of prior losses

(zt > 1), the function becomes

v (Xt+1, wt, zt) =

 Xt+1 if Xt+1 ≥ 0

λ (zt)Xt+1 if Xt+1 < 0
(15.8)

where λ (zt) = λ+k (zt − 1), k > 0. Here we see that losses that follow previous

losses are penalized at the rate of λ (zt), which exceeds λ and grows larger as

prior losses become larger (zt exceeds unity).

Finally, the prospect theory term in the utility function is scaled to make

the risky-asset price-dividend ratio and the risky-asset risk premium stationary

6Since v (·) depends only on the risky asset’s returns, it is assumed that the individual is
not subject to loss aversion on nonfinancial assets.
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variables as aggregate wealth increases over time.7 The form of this scaling

factor is chosen to be

bt = b0C
γ−1

t (15.9)

where b0 > 0 and Ct is aggregate consumption at date t.8

15.1.2 Solving the Model

The state variables for the individual’s consumption-portfolio choice problem

are wealth, Wt, and zt. Intuitively, since the aggregate consumption - dividend

growth process in equation (15.1) is an independent, identical distribution, the

dividend level is not a state variable. We start by assuming that the ratio of the

risky-asset price to its dividend is a function of only the state variable zt; that

is, ft ≡ Pt/Dt = ft (zt), and then show that an equilibrium exists in which this

is true.9 Given this assumption, the return on the risky asset can be written as

Rt+1 =
Pt+1 +Dt+1

Pt
=

1 + f (zt+1)

f (zt)

Dt+1

Dt
(15.10)

=
1 + f (zt+1)

f (zt)
egD+σDεt+1

It is also assumed that an equilibrium exists in which the risk-free return is

constant; that is, Rf,t = Rf . This will be verified by the solution to the agent’s

first-order conditions. Making this assumption simplifies the form of the func-

tion v. From (15.7) and (15.8) it can be verified that v is proportional to wt.

7Without the scaling factor, as wealth (output) grows at rate gD , the prospect theory term
would dominate the conventional constant relative-risk-aversion term.

8Because Ct is assumed to be aggregate consumption, the individual views bt as an exo-
geneous variable.

9This is plausible because the standard part of the utility function displays constant relative
risk aversion. With this type of utility, optimal portfolio proportions would not be a function
of wealth.
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Hence, v (Xt+1, wt, zt) can be written as v (Xt+1, wt, zt) = wtv̂ (Rt+1, zt), where

for zt < 1

v̂ (Rt+1, zt) =

 Rt+1 −Rf if Rt+1 ≥ ztRf

Rt+1 −Rf + (λ− 1) (Rt+1 − ztRf ) if Rt+1 < ztRf

(15.11)

and for zt > 1

v̂ (Rt+1, zt) =

 Rt+1 −Rf if Rt+1 ≥ Rf

λ (zt) (Rt+1 −Rf ) if Rt+1 < Rf

(15.12)

The individual’s maximization problem is then

max
{Ct,wt}

E0

[ ∞∑
t=0

(
δt
Cγt
γ

+ b0δ
t+1C

γ−1

t wtv̂ (Rt+1, zt)

)]
(15.13)

subject to the budget constraint

Wt+1 = (Wt + Yt − Ct)Rf + wt (Rt+1 −Rf ) (15.14)

and the dynamics for zt given in (15.5). Define δtJ (Wt, zt) as the derived

utility-of-wealth function. Then the Bellman equation for this problem is

J (Wt, zt) = max
{Ct,wt}

Cγt
γ

+Et

[
b0δC

γ−1

t wtv̂ (Rt+1, zt) + δJ (Wt+1, zt+1)
]
(15.15)

Taking the first-order conditions with respect to Ct and wt, one obtains

0 = Cγ−1
t − δRfEt [JW (Wt+1, zt+1)] (15.16)
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0 = Et

[
b0C

γ−1

t v̂ (Rt+1, zt) + JW (Wt+1, zt+1) (Rt+1 −Rf )
]

= b0C
γ−1

t Et [v̂ (Rt+1, zt)] + Et [JW (Wt+1, zt+1)Rt+1]

−RfEt [JW (Wt+1, zt+1)] (15.17)

It is straightforward (and left as an end-of-chapter exercise) to show that (15.16)

and (15.17) imply the standard envelope condition

Cγ−1
t = JW (Wt, zt) (15.18)

Substituting this into (15.16), one obtains the Euler equation

1 = δRfEt

[(
Ct+1

Ct

)γ−1
]

(15.19)

Using (15.18) and (15.19) in (15.17) implies

0 = b0C
γ−1

t Et [v̂ (Rt+1, zt)] + Et

[
Cγ−1
t+1 Rt+1

]
−RfEt

[
Cγ−1
t+1

]
= b0C

γ−1

t Et [v̂ (Rt+1, zt)] + Et

[
Cγ−1
t+1 Rt+1

]
− Cγ−1

t /δ (15.20)

or

1 = b0

(
Ct
Ct

)γ−1

δEt [v̂ (Rt+1, zt)] + δEt

[
Rt+1

(
Ct+1

Ct

)γ−1
]

(15.21)

In equilibrium, conditions (15.19) and (15.21) hold with the representative

agent’s consumption, Ct, replaced with aggregate consumption, Ct. Using the

assumption in (15.1) that aggregate consumption is lognormally distributed, we

can compute the expectation in (15.19) to solve for the risk-free interest rate:

Rf = e(1−γ)gC− 1
2 (1−γ)2σ2C/δ (15.22)
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Using (15.1) and (15.10), condition (15.21) can also be simplified:

1 = b0δEt [v̂ (Rt+1, zt)] + δEt

[
1 + f (zt+1)

f (zt)
egD+σDεt+1

(
egC+σCηt+1

)γ−1
]

(15.23)

or

1 = b0δEt

[
v̂

(
1 + f (zt+1)

f (zt)
egD+σDεt+1 , zt

)]
(15.24)

+δegD−(1−γ)gC+ 1
2 (1−γ)2σ2C(1−ρ2)Et

[
1 + f (zt+1)

f (zt)
e(σD−(1−γ)ρσC)εt+1

]

The price-dividend ratio, Pt/Dt = ft (zt), can be computed numerically from

(15.24). However, because zt+1 = 1+η
(
zt

R
Rt+1

− 1
)
andRt+1 = 1+f(zt+1)

f(zt)
egD+σDεt+1 ,

zt+1 depends upon zt, f (zt), f (zt+1), and εt+1; that is,

zt+1 = 1 + η

(
zt
Rf (zt) e

−gD−σDεt+1

1 + f (zt+1)
− 1

)
(15.25)

Therefore, (15.24) and (15.25) need to be solved jointly. Barberis, Huang, and

Santos describe an iterative numerical technique for finding the function f (·).

Given all other parameters, they guess an initial function, f (0), and then use

it to solve for zt+1 in (15.25) for given zt and εt+1. Then, they find a new

candidate solution, f (1), using the following recursion that is based on (15.24):

f (i+1) (zt) = δegD−(1−γ)gC+ 1
2 (1−γ)2σ2C(1−ρ2) ×

Et

[[
1 + f (i) (zt+1)

]
e(σD−(1−γ)ρσC)εt+1

]
(15.26)

+f (i) (zt) b0δEt

[
v̂

(
1 + f (i) (zt+1)

f (i) (zt)
egD+σDεt+1 , zt

)]
, ∀zt



454 CHAPTER 15. BEHAVIORAL FINANCE AND ASSET PRICING

where the expectations are computed using a Monte Carlo simulation of the

εt+1. Given the new candidate function, f (1), zt+1 is again found from (15.25).

The procedure is repeated until the function f (i) converges.

15.1.3 Model Results

For reasonable parameter values, Barberis, Huang, and Santos find that Pt/Dt =

ft (zt) is a decreasing function of zt. The intuition was described earlier: if there

were prior gains from holding the risky asset (zt is low), then investors become

less risk averse and bid up the price of the risky asset.

Using their estimate of f (·), the unconditional distribution of stock returns

is simulated from a randomly generated sequence of εt’s. Because dividends and

consumption follow separate processes and stock prices have volatility exceeding

that of dividend fundamentals, the volatility of stock prices can be made sub-

stantially higher than that of consumption. Moreover, because of loss aversion,

the model can generate a significant equity risk premium for reasonable values

of the consumption risk aversion parameter γ. Thus, the model provides an

explanation for the “equity premium puzzle.” Because the investor cares about

stock volatility, per se, a large premium can exist even though stocks may not

have a high correlation with consumption.10

The model also generates predictability in stock returns: returns tend to

be higher following crashes (when zt is high) and smaller following expansions

(when zt is low). An implication of this is that stock returns are negatively

correlated at long horizons, a feature documented by empirical research such as

(Fama and French 1988), (Poterba and Summers 1988), and (Richards 1997).

The Barberis, Huang, and Santos model is one with a single type of repre-

sentative individual who suffers from psychological biases. The next model that

10Recall that in standard consumption asset pricing models, an asset’s risk premium depends
only on its return’s covariance with consumption.
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we consider assumes that there are two types of representative individuals, those

with rational beliefs and those with irrational beliefs regarding the economy’s

fundamentals. Important insights are obtained by analyzing the interactions

of these two groups of investors.

15.2 The Impact of Irrational Traders on Asset

Prices

The Kogan, Ross, Wang, and Westerfield model is based on the following as-

sumptions.

15.2.1 Assumptions

The model is a simplified endowment economy with two different types of rep-

resentative individuals, where one type suffers from either irrational optimism

or pessimism regarding risky-asset returns. Both types of individuals maximize

utility of consumption at a single, future date.11

Technology

There is a risky asset that represents a claim on a single, risky dividend

payment made at the future date T > 0. The value of this dividend payment is

denoted DT , and it is the date T realization of the geometric Brownian motion

process

dDt/Dt = µdt+ σdz (15.27)

where µ and σ are constants, σ > 0, and D0 = 1. Note that while the process

in equation (15.27) is observed at each date t ∈ [0, T ], only its realization at

date T determines the risky asset’s single dividend payment, DT . As with

11Alvaro Sandroni (Sandroni 2000) developed a discrete-time model with similar features
that allows the different types of individuals to consume at multiple future dates.
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other endowment economies, it is assumed that the date T dividend payment

is perishable output so that, in equilibrium, it equals aggregate consumption,

CT = DT .

Also, it is assumed that there is a market for risk-free borrowing or lending

where payment occurs with certainty at date T . In other words, individuals can

buy or sell (issue) a zero-coupon bond that makes a default-free payment of 1 at

date T . This bond is assumed to be in zero net supply; that is, the aggregate

net amount of risk-free lending or borrowing is zero. However, because there

are heterogeneous groups of individuals in the economy, some individuals may

borrow while others will lend.

Preferences

All individuals in the economy have identical constant relative-risk-aversion

utility defined over their consumption at date T . However, there are two

different groups of representative individuals. The first group of individuals

are rational traders who have a date 0 endowment equal to one-half of the risky

asset and maximize the expected utility function

E0

[
Cγr,T
γ

]
(15.28)

where Cr,T is the date T consumption of the rational traders and γ < 1. The

second group of individuals are irrational traders. They also possess a date 0

endowment of one-half of the risky asset but incorrectly believe that the proba-

bility measure is different from the actual one. Rather than thinking that the

aggregate dividend process is given by (15.27), the irrational traders incorrectly

perceive the dividend process to be

dDt/Dt =
(
µ+ σ2η

)
dt+ σdẑ (15.29)
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where the irrational traders believe dẑ is a Brownian motion, whereas in reality,

dẑ = dz − σηdt. The irrationality parameter, η, is assumed to be a constant.

A positive value of η implies that the irrational individuals are too optimistic

about the risky asset’s future dividend payment, while a negative value of η

indicates pessimism regarding the risky asset’s payoff. Hence, rather than

believe that the probability measure P is generated by the Brownian motion

process dz, irrational traders believe that the probability measure is generated

by dẑ, which we refer to as the probability measure P̂ .12 Therefore, an irrational

individual’s expected utility is

Ê0

[
Cγn,T
γ

]
(15.30)

where Cn,T is the date T consumption of the irrational trader.

15.2.2 Solution Technique

We start by showing that the irrational individual’s utility can be reinterpreted

as the state-dependent utility of a rational individual. Recall from Chapter

10 that as a result of Girsanov’s theorem, a transformation of the type dẑ =

dz−σηdt leads to P̂ and P being equivalent probability measures and that there

exists a sequence of strictly positive random variables, ξt, that can transform

one distribution to the other. Specifically, recall from equation (10.11) that

Girsanov’s theorem implies dP̂T = (ξT /ξ0) dPT , where based on (10.12)

ξT = exp

[∫ T

0

σηdz − 1

2

∫ T

0

(ση)
2
ds

]
= e−

1
2σ

2η2T+ση(zT−z0) (15.31)

12 It should be emphasized that the probability measure P̂ is not necessarily the risk-neutral
probability measure. The dividend process is not an asset return process so that µ is not an
asset’s expected rate of return and η is not a risk premium.
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and where, without loss of generality, we have assumed that ξ0 = 1. The second

line in (15.31) follows because σ and η are assumed to be constants, implying

that ξt follows the lognormal process dξ/ξ = σηdz. Similar to (10.30), an

implication of dP̂T = ξT dPT is that an irrational trader’s expected utility can

be written as

Ê0

[
Cγn,T
γ

]
= E0

[
ξT
Cγn,T
γ

]
(15.32)

= E0

[
e−

1
2σ

2η2T+ση(zT−z0)
Cγn,T
γ

]

From (15.32) we see that the objective function of the irrational trader is obser-

vationally equivalent to that of a rational trader whose utility is state dependent.

The state variable affecting utility, the Brownian motion zT , is the same source

of uncertainty determining the risky asset’s dividend payment.

While the ability to transform the behavior of an irrational individual to

that of a rational one may depend on the particular way that irrationality is

modeled, this transformation allows us to use standard methods for determining

the economy’s equilibrium. Given the assumption of two different groups of

representative individuals, we can solve for an equilibrium where the represen-

tative individuals act competitively, taking the price of the risky asset and the

risk-free borrowing or lending rate as given. In addition, because there is only

a single source of uncertainty, that being the risky asset’s payoff, the economy

is dynamically complete.

Given market completeness, let us apply the martingale pricing method in-

troduced in Chapter 12. Each individual’s lifetime utility function can be

interpreted as of the form of (12.55) but with interim utility of consumption

equaling zero and only a utility of terminal bequest being nonzero. Hence,

based on equation (12.57), the result of each individual’s static optimization is
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that his terminal marginal utility of consumption is proportional to the pricing

kernel:

Cγ−1
r,T = λrMT (15.33)

ξTC
γ−1
n,T = λnMT (15.34)

where λr and λn are the Lagrange multipliers for the rational and irrational

individuals, respectively. Substituting out for MT , we can write

Cr,T = (λξT )
− 1
1−γ Cn,T (15.35)

where we define λ ≡ λr/λn. Also note that the individuals’terminal consump-

tion must sum to the risky asset’s dividend payment

Cr,T + Cn,T = DT (15.36)

Equations (15.35) and (15.36) allow us to write each individual’s terminal con-

sumption as

Cr,T =
1

1 + (λξT )
1

1−γ
DT (15.37)

Substituting (15.37) into (15.35), we also obtain

Cn,T =
(λξT )

1
1−γ

1 + (λξT )
1

1−γ
DT (15.38)

Similar to what was done in Chapter 13, the parameter λ = λr/λn is deter-

mined by the individuals’ initial endowments of wealth. Each individual’s

initial wealth is an asset that pays a dividend equal to the individual’s terminal

consumption. To value this wealth, we must determine the form of the sto-

chastic discount factor used to discount consumption. As a prelude, note that
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the date t price of the zero coupon bond that pays 1 at date T > t is given by

P (t, T ) = Et [MT /Mt] (15.39)

In what follows, we deflate all asset prices, including the individuals’ initial

wealths, by this zero-coupon bond price. This is done for analytical convenience,

though it should be noted that using the zero-coupon bond as the numeraire is

somewhat different from using the value of a money market investment as the

numeraire, as was done in Chapter 10. While the return on the zero-coupon

bond over its remaining time to maturity is risk-free, its instantaneous return

will not, in general, be risk-free.

Let us define Wr,0 and Wn,0 as the initial wealths, deflated by the zero-

coupon bond price, of the rational and irrational individuals, respectively. They

equal

Wr,0 =
E0 [Cr,TMT /M0]

E0 [MT /M0]
=
E0 [Cr,TMT ]

E0 [MT ]
(15.40)

=
E0

[
Cr,TC

γ−1
r,T /λr

]
E0

[
Cγ−1
r,T /λr

] =
E0

[
Cγr,T

]
E0

[
Cγ−1
r,T

]

=

E0

[[
1 + (λξT )

1
1−γ
]−γ

Dγ
T

]
E0

[[
1 + (λξT )

1
1−γ
]1−γ

Dγ−1
T

]

where in the second line of (15.40) we used (15.33) to substitute forMT and then

in the third line we used (15.37) to substitute for Cr,T . A similar derivation

that uses (15.34) and (15.38) leads to

Wn,0 =

E0

[
(λξT )

1
1−γ

[
1 + (λξT )

1
1−γ
]−γ

Dγ
T

]
E0

[[
1 + (λξT )

1
1−γ
]1−γ

Dγ−1
T

] (15.41)



15.2. THE IMPACT OF IRRATIONAL TRADERS ON ASSET PRICES 461

Because it was assumed that the rational and irrational individuals are each

initially endowed with equal one-half shares of the risky asset, then it must be

the case that Wr,0 = Wn,0. Equating the right-hand sides of equations (15.40)

and (15.41) determines the value for λ. The expectations in these equations can

be computed by noting that ξT satisfies (15.31) and is lognormally distributed

and that

DT /Dt = e[µ−
1
2σ

2](T−t)+σ(zT−zt) (15.42)

and is also lognormally distributed.13 It is left as an end-of-chapter exercise to

verify that the value of λ that solves the equality Wr,0 = Wn,0 is given by

λ = e−γησ
2T (15.43)

Given this value of λ, we have now determined the form of the pricing kernel

and can solve for the equilibrium price of the risky asset. Define St as the

date t < T price of the risky asset deflated by the price of the zero-coupon

bond. Then if we also define εT,t ≡ λξT = ξte
−γησ2T− 1

2σ
2η2(T−t)+ση(zT−zt),

the deflated risky-asset price can be written as

St =
Et [DTMT /Mt]

Et [MT /Mt]
=

Et

[(
1 + ε

1
1−γ
T,t

)1−γ
Dγ
T

]

Et

[(
1 + ε

1
1−γ
T,t

)1−γ
Dγ−1
T

] (15.44)

While it is not possible to characterize in closed form the rational and irrational

individuals’portfolio policies, we can still derive insights regarding equilibrium

asset pricing.14

13Recall that it was assumed that D0 = 1. Note also that powers of ξT and DT , such as
DγT , are also lognormally distributed.
14Kogan, Ross, Wang, and Westerfield show that the individuals’ demand for the risky

asset, ω, satisfies the bound |ω| ≤ 1 + |η| (2− γ) / (1− γ).
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15.2.3 Analysis of the Results

For the limiting case of there being only rational individuals, that is, η = 0,

then εT,t = ξt = 1 and from (15.44) the deflated stock price, Sr,t, is

Sr,t =
Et [Dγ

T ]

Et

[
Dγ−1
T

] = Dte
[µ−σ2](T−t)+σ2γ(T−t) (15.45)

= e[µ−(1−γ)σ2]T+[(1−γ)− 1
2 ]σ2t+σ(zt−z0)

A simple application of Itô’s lemma shows that equation (15.45) implies that

the risky asset’s price follows geometric Brownian motion:

dSr,t/Sr,t = (1− γ)σ2dt+ σdz (15.46)

Similarly, when all individuals are irrational, the deflated stock price, Sn,t, is

Sn,t = e[µ−(1−γ−η)σ2]T+[(1−γ−η)− 1
2 ]σ2t+σ(zt−z0) = Sr,te

ησ2(T−t) (15.47)

and its rate of return follows the process

dSn,t/Sn,t = (1− γ − η)σ2dt+ σdz (15.48)

Note that in (15.47) and (15.48) the effect of η is similar to γ. When all

individuals are irrational, if η is positive, the higher expected dividend growth

acts like lower risk aversion in that individuals find the risky asset, relative

to the zero-coupon bond, more attractive. Equation (15.47) shows that this

greater demand raises the deflated stock price relative to that in an economy

with all rational individuals, while equation (15.48) indicates that it also lowers

the stock’s equilibrium expected rate of return.

It is also interesting to note that (15.46) and (15.48) indicate that when the
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economy is populated by only one type of individual, the volatility of the risky

asset’s deflated return equals σ. In contrast, when both types of individuals

populate the economy, the risky asset’s volatility, σS,t, always exceeds σ. Ap-

plying Itô’s lemma to (15.44), Kogan, Ross, Wang, and Westerfield prove that

the risky asset’s volatility satisfies the following bounds:15

σ ≤ σS,t ≤ σ (1 + |η|) (15.49)

The conclusion is that a diversity of beliefs has the effect of raising the equilib-

rium volatility of the risky asset.

For the special case in which rational and irrational individuals have loga-

rithmic utility, that is, γ = 0, then (15.44) simplifies to

St =
1 + Et [ξT ]

Et
[
(1 + ξT )D−1

T

] (15.50)

= Dte
[µ−σ2](T−t) 1 + ξt

1 + ξte
−ησ2(T−t)

= e[µ−
1
2σ

2]T− 1
2σ

2(T−t)+σ(zt−z0) 1 + ξt
1 + ξte

−ησ2(T−t)

For this particular case, the risky asset’s expected rate of return and variance,

as a function of the distribution of wealth between the rational and irrational

individuals, can be derived explicitly. Define

αt ≡
Wr,t

Wr,t +Wn,t
=
Wr,t

St
(15.51)

as the proportion of total wealth owned by the rational individuals. Using

(15.40) and (15.44), we see that when γ = 0 this ratio equals

15The proof is given in Appendix B of (Kogan, Ross, Wang, and Westerfield 2006). Below,
we show that this bound is satisfied for the case of individuals with logarithmic utility.
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αt =

Et

[(
1 + ε

1
1−γ
T,t

)−γ
Dγ
T

]

Et

[(
1 + ε

1
1−γ
T,t

)1−γ
Dγ
T

] =
1

1 + Et [ξT ]
=

1

1 + ξt
(15.52)

Viewing St as a function of Dt and ξt as in the second line of (15.50), Itô’s

lemma can be applied to derive the mean and standard deviation of the risky

asset’s rate of return. The algebra is lengthy but results in the values

σS,t = σ + ησ

[
1

1 + e−ησ2(T−t)
(
α−1
t − 1

) − αt] (15.53)

and

µS,t = σ2
S,t − ησ (1− αt)σS,t (15.54)

where we have used αt = 1/ (1 + ξt) to substitute out for ξt. Note that when

αt = 1 or 0, equations (15.53) and (15.54) are consistent with (15.46) and (15.48)

for the case of γ = 0.

Kogan, Ross, Wang, and Westerfield use their model to study how terminal

wealth (consumption) is distributed between the rational and irrational indi-

viduals as the investment horizon, T , becomes large. The motivation for this

comparative static exercise is the well-known conjecture made by Milton Fried-

man (Friedman 1953) that irrational traders cannot survive in a competitive

market. The intuition is that when individuals trade based on the wrong be-

liefs, they will lose money to the rational traders, so that in the long run these

irrational traders will deplete their wealth. Hence, in the long run, rational

traders should control most of the economy’s wealth and asset prices should

reflect these rational individual’s (correct) beliefs. The implication is that even

when some individuals are irrational, markets should evolve toward long-run

effi ciency because irrational individuals will be driven to “extinction.”
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Kogan, Ross, Wang, and Westerfield introduce a definition of what would

constitute the long-run dominance of rational individuals and, therefore, the rel-

ative extinction of irrational individuals. The relative extinction of an irrational

individual would occur if

lim
T→∞

Cn,T
Cr,T

= 0 a.s. (15.55)

which means that for arbitrarily small δ the probability of
∣∣∣ lim
T→∞

Cn,T
Cr,T

∣∣∣ > δ equals

zero.16 The relative extinction of a rational individual is defined symmetrically,

and an individual is said to survive relatively in the long run if relative extinction

does not occur.17

For the case of individuals having logarithmic utility, irrational individuals

always suffer relative extinction. The proof of this is as follows. Rearranging

(15.35), we have
Cn,T
Cr,T

= (λξT )
1

1−γ (15.56)

and for the case of γ = 0, (15.43) implies that λ = 1. Hence,

Cn,T
Cr,T

= ξT (15.57)

= e−
1
2σ

2η2T+ση(zT−z0)

Based on the strong law of large numbers for Brownian motions, it can be shown

16 In general, a sequence of random variables, say, Xt, is said to converge to X almost surely

(a.s.) if for arbitrary δ, the probability P
(∣∣∣∣ lim
t−→∞

Xt −X
∣∣∣∣ > δ

)
= 0.

17One could also define the absolute extinction of the irrational individual. This would
occur if lim

T→∞
Cn,T = 0 almost surely, and an individual is said to survive absolutely in the long

run if absolute extinction does not occur. Relative survival is suffi cient for absolute survival,
but the converse is not true. Similarly, absolute extinction implies relative extinction, but
the converse is not true.
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that for any value of b

lim
T→∞

eaT+b(zT−z0) =

 0 a < 0

∞ a > 0
(15.58)

where convergence occurs almost surely.18 Since − 1
2σ

2η2 < 0 in (15.57), we see

that equation (15.55) is proved.

The intuition for why irrational individuals become relatively extinct is due,

in part, to the special properties of logarithmic utility. Note that the portfolio

policy of the logarithmic rational individual is to maximize at each date t the

utility

Et [lnCr,T ] = Et [lnWr,T ] (15.59)

This is equivalent to maximizing the expected continuously compounded return

per unit time:

Et

[
1

T − t ln (Wr,T /Wr,t)

]
=

1

T − t [Et [ln (Wr,T )]− ln (Wr,t)] (15.60)

since Wr,t is known at date t and T − t > 0. Thus, from (15.60) the rational

log utility individual follows a portfolio policy that maximizes Et [d lnWr,t] at

each point in time. This portfolio policy is referred to as the “growth-optimum

portfolio,” because it maximizes the expected (continuously compounded) re-

turn on wealth.19 Now given that in the model economy there is a single source

of uncertainty affecting portfolio returns, dz, the processes for the rational and

18See section 2.9.A of (Karatzas and Shreve 1991).
19For the standard portfolio choice problem of selecting a portfolio from n risky assets

and an instantaneously risk-free asset, we showed in equation (12.44) of Chapter 12 that the
growth-optimum portfolio has the risky-asset portfolio weights ω∗i =

∑n
j=1 υij

(
µj − r

)
. Note

that this log utility investor’s portfolio depends only on the current values of the investment
opportunity set, and portfolio demands do not reflect a desire to hedge against changes in
investment opportunities.
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irrational individuals’wealths can be written as

dWr,t/Wr,t = µr,tdt+ σr,tdz (15.61)

dWn,t/Wn,t = µn,tdt+ σn,tdz (15.62)

where, in general, the expected rates of returns and volatilities, µr,t, µn,t, σr,t,

and σn,t, are time varying. Applying Itô’s lemma, it is straightforward to show

that the process followed by the log of the ratio of the individuals’wealth is

d ln

(
Wn,t

Wr,t

)
=

[(
µn,t −

1

2
σ2
n,t

)
−
(
µr,t −

1

2
σ2
r,t

)]
dt+ (σn,t − σr,t) dz

= Et [d lnWn,t]− Et [d lnWr,t] + (σn,t − σr,t) dz (15.63)

Since the irrational individual chooses a portfolio policy that deviates from

the growth-optimum portfolio, we know that Et [d lnWn,t] − Et [d lnWr,t] < 0,

and thus Et [d ln (Wn,t/Wr,t)] < 0, making d ln (Wn,t/Wr,t) a process that is

expected to steadily decline as t −→ ∞, which verifies Friedman’s conjecture

that irrational individuals lose wealth to rational ones in the long run.

While irrational individuals lose influence in the long run, as indicated by

equations (15.50), (15.53), and (15.54), their presence may impact the level

and dynamics of asset prices for substantial periods of time prior to becoming

"extinct." Moreover, if as empirical evidence suggests, individuals have constant

relative-risk-aversion utility with γ < 0 so that they are more risk averse than

logarithmic utility, it turns out that Friedman’s conjecture may not always hold.

To see this, let us compute (15.56) for the general case of λ = e−γησ
2T :

Cn,T
Cr,T

= (λξT )
1

1−γ (15.64)

= e−[γη+ 1
2η

2] σ
2

1−γ T+ ση
1−γ (zT−z0)
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Thus, we see that the limiting behavior of Cn,T /Cr,T is determined by the sign

of the expression
[
γη + 1

2η
2
]
or η

(
γ + 1

2η
)
. Given that γ < 0, the strong law

of large numbers allows us to conclude

lim
T−→∞

Cn,T
Cr,T

=


0 η < 0 rational trader survives

∞ 0 < η < −2γ irrational trader survives

0 −2γ < η rational trader survives

(15.65)

When the irrational individual is pessimistic (η < 0) or strongly optimistic

(η > −2γ), he becomes relatively extinct in the long run. However, when the

irrational individual is moderately optimistic (0 < η < −2γ), the model has the

opposite implication in that it is the rational individual who becomes relatively

extinct in the long run. This parametric case is the reverse of Friedman’s

conjecture.

The intuition for these results comes from our previous discussion of a log

utility investor’s choice of the growth-optimal portfolio. When rational indi-

viduals are more risk averse than log utility (γ < 0), their demand for the risky

asset is less than would be chosen by a log utility investor.20 Ceteris paribus,

the wealth of these γ < 0 investors would tend to grow more slowly than that of

someone with log utility. When η < 0, irrationally pessimistic investors would

demand even less of the risky asset than their rational counterparts, which would

move them even farther away from the growth-optimal portfolio. Hence, in this

case, a rational individual’s wealth would tend to grow faster than the wealth

of the irrational individual, so that the irrational individual would not survive

in the long run.

When the irrational individual is optimistic (η > 0), her demand for the risky

20For example, recall from Chapter 12’s analysis of the standard consumption-portfolio
choice problem when investment opportunities are constant that equation (12.35), ω∗ =
µ−r

(1−γ)σ2
, implies that the demand for the risky asset decreases as risk aversion increases.



15.2. THE IMPACT OF IRRATIONAL TRADERS ON ASSET PRICES 469

asset will exceed that of a rational investor. When her optimism is moderate,

(0 < η < −2γ), her portfolio demand is closer to the growth-optimal portfolio

than is the portfolio demanded by the rational individual. Therefore, in this

case, the moderately optimistic individual’s wealth grows faster than that of the

rational individual, so that the rational individual suffers relative extinction in

the long run. In contrast, when the irrational individual is strongly optimistic

(η > −2γ), her demand for the risky asset is so great that her portfolio choice is

farther from the growth-optimal portfolio than is the rational individual. For

this case, the irrational individual’s wealth tends to grow relatively slowly and,

as in the pessimistic case, she does not survive in the long run.

The model outlined in this section is clearly a simplification of reality in

that it assumes that individuals gain utility from only terminal, not interim,

consumption. Interim consumption reduces the growth of wealth, and dif-

ferences between rational and irrational individuals’ consumption rates could

affect their relative survivability. The model also assumes that rational and

irrational individuals have the same preferences (levels of risk aversion). In

general, an individual’s portfolio choice, which affects his growth of wealth and

survivability, is determined by risk aversion as well as beliefs. Hence, system-

atic differences between rational and irrational investors’ risk aversions could

influence the model’s conclusions. In addition, one might expect that irrational

individuals might learn over time of their mistakes since the historical distribu-

tion of the dividend process will tend to differ from their beliefs. The effect of

such learning may be that irrationality could diminish with age.21 Lastly, the

model considers only one form of irrationality, namely, systematic optimism or

pessimism. Other forms of irrationality have been identified that presumably

21However, there is empirical psychological evidence (Lord, Ross, and Lepper 1979) showing
that individuals tend to persist too strongly in their initial beliefs after being exposed to
contrary information.



470 CHAPTER 15. BEHAVIORAL FINANCE AND ASSET PRICING

would change the dynamics of wealth and of the equilibrium prices of risky as-

sets.22 Yet, the main conclusions of the model, that irrational investors may

have a significant impact on asset prices and that they may not necessarily

become extinct, are likely to remain robust.

15.3 Summary

There is a growing body of experimental and empirical research documenting

that individuals do not always form beliefs rationally and do not always make

decisions consistent with expected utility theory. Analyzing the asset pricing

implications of such behavior is at an early stage. This chapter attempted

to present two of the few general equilibrium models that incorporate psycho-

logical biases or irrationality. Interestingly, these models can be solved using

techniques similar to those previously employed to derive models of rational,

expected-utility-maximizing individuals. Both models in this chapter embed

rationality as a special case, which makes it easy to see how their behavioral

assumptions specifically affect the models’results.

Currently, there is no consensus among financial economists regarding the

importance of incorporating aspects of behavioral finance into asset pricing the-

ories. Some criticize behavioral finance theories as ad hoc explanations of anom-

alies that are not always mutually consistent. It is especially unclear whether a

behavioral paradigm will be universally successful in supplanting asset pricing

theories built on von Neumann-Morgenstern expected utility. However, it is

likely that research exploring the asset pricing implications of behavioral biases

will grow in coming years.

22Recent models incorporating various forms of irrationality (Barberis, Shleifer, and Vishny
1998); (Daniel, Hirshleifer, and Subrahmanyam 1998); and (Hong and Stein 1999) have been
constructed to explain the empirical phenomena that stock returns display short-run positive
serial correlation (momentum) and long-run negative serial correlation (reversals or mean
reversion). See pages 1551-1556 of John Campbell’s survey of asset pricing (Campbell 2000)
for a summary of these and other behavioral finance models.
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15.4 Exercises

1. In the Barberis, Huang, and Santos model, verify that the first-order con-

ditions (15.16) and (15.17) lead to the envelope condition (15.18).

2. In the Barberis, Huang, and Santos model, solve for the price - dividend

ratio, Pt/Dt, for Economy II when utility is standard constant relative

risk aversion, that is,

E0

[ ∞∑
t=0

δt
Cγt
γ

]

3. In the Kogan, Ross, Wang, and Westerfield model, verify that λ = e−γησ
2T

satisfies the equality Wr,0 = Wn,0.

4. In the Kogan, Ross, Wang, and Westerfield model, suppose that both rep-

resentative individuals are rational but have different levels of risk aver-

sion. The first type of representative individual maximizes utility of the

form

E0

[
C
γ1
r,T

γ1

]

and the second type of representative individual maximizes utility of the

form

E0

[
C
γ2
n,T

γ2

]

where 1 > γ1 > γ2. Assuming Wr,0 = Wn,0, solve for the equilibrium

price of the risky asset deflated by the discount bond maturing at date T .
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Chapter 16

Asset Pricing with

Differential Information

The asset pricing models in prior chapters assumed that individuals have com-

mon information. Now we will consider arguably more realistic situations where

individuals can have different private information about an asset’s future payoff

or value. Because the literature on asset pricing in the presence of private

information is vast, this chapter is meant to provide only a taste of this re-

search area.1 However, the two models that we present in this chapter, those

of Sanford Grossman (Grossman 1976) and Albert “Pete” Kyle (Kyle 1985),

are probably the two most common modeling frameworks in this field of re-

search. Familiarity with these two models provides a segue to much additional

theoretical research.

A topic of particular interest is the influence of private information on a risky

asset’s equilibrium price. We start by analyzing the Grossman model that shows

1More in-depth coverage of topics in this chapter includes books by Maureen O’Hara
(O’Hara 1995) and Markus Brunnermeier (Brunnermeier 2001).
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how individuals’information affects their demands for an asset and, via these

demands, how private information is contained in the asset’s equilibrium price.

The model examines two equilibria: a “competitive,” but not fully rational,

equilibrium; and a fully-revealing rational expectations equilibrium.

Following this, we examine an extension of the Grossman model that includes

an additional source of uncertainty, namely, shifts in the supply of the risky

asset. A model of this type was developed in a number of studies, including

(Grossman and Stiglitz 1980), (Hellwig 1980), (Diamond and Verrecchia 1981),

and (Grundy and McNichols 1989). Importantly, in a rational expectations

equilibrium this additional supply uncertainty makes the equilibrium asset price

only partially reveal the private information of individuals.

We cover one additional model of a risky-asset market that also possesses an

equilibrium where private information is partially revealed. It is Kyle’s seminal

market microstructure model. This model assumes a market for a particular

security in which one agent, the so-called insider, has private information and

trades with lesser-informed agents composed of a market maker and “noise”

traders. The model solves for the strategic trading behavior of the insider and

market maker and provides a theoretical framework for determining bid-ask

spreads and the market impact of trades.

16.1 Equilibrium with Private Information

The model by Sanford Grossman (Grossman 1976) that we consider in this sec-

tion examines how an investor’s private information about a risky asset’s future

payoff affects her demand for that asset and, in turn, the asset’s equilibrium

price. In addition, it takes account of the idea that a rational individual can

learn about others’private information from the risky asset’s price, a concept
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known as “price discovery.”

16.1.1 Grossman Model Assumptions

The Grossman model is based on the following assumptions.

Assets

This is a single-period portfolio choice problem. At the beginning of the

period, traders can choose between a risk-free asset, which pays a known end-

of-period return (1 plus the interest rate) of Rf , and a risky asset that has a

beginning-of-period price of P0 per share and an end-of-period random payoff

(price) of P̃1 per share. The unconditional distribution of P̃1 is assumed to be

normally distributed as N(m, σ2). The aggregate supply of shares of the risky

asset is fixed at X̄, but the risk-free asset is in perfectly elastic supply.

Trader Wealth and Preferences

There are n different traders. The ith trader has beginning-of-period wealth

W0i and is assumed to maximize expected utility over end-of-period wealth,

W̃1i. Each trader is assumed to have constant absolute-risk-aversion (CARA)

utility, but traders’levels of risk aversion are permitted to differ. Specifically,

the form of the ith trader’s utility function is assumed to be

Ui(W̃1i) = −e−aiW̃1i , ai > 0 (16.1)

Trader Information

At the beginning of the period, the ith trader observes yi, which is a realized

value from the noisy signal of the risky-asset end-of-period value

ỹi = P̃1 + ε̃i (16.2)

where ε̃i ∼ N(0, σ2
i ) and is independent of P̃1.
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16.1.2 Individuals’Asset Demands

Let Xi be the number of shares of the risky asset chosen by the ith trader at the

beginning of the period. Thus, the ith trader’s wealth accumulation equation

can be written as

W̃1i = RfW0i +
[
P̃1 −RfP 0

]
Xi (16.3)

Denote Ii as the information available to the ith trader at the beginning of the

period. The trader’s maximization problem is then

max
Xi

E
[
Ui(W̃1i) | Ii

]
= max

Xi
E
[
−e−ai (RfW0i + [ P̃1−RfP 0 ]Xi) | Ii

]
(16.4)

Since W̃1i depends on P̃1, it is normally distributed, and due to the exponential

form of the utility function, (16.4) is the moment-generating function of a normal

random variable. Therefore, as we have seen earlier in the context of mean-

variance analysis, the maximization problem is equivalent to

max
Xi

{
E
[
W̃1i | Ii

]
− 1

2
aiVar

[
W̃1i | Ii

] }
(16.5)

or

max
Xi

{
Xi

(
E
[
P̃1 | Ii

]
−RfP0

)
− 1

2
aiX

2
i Var

[
P̃1 | Ii

] }
(16.6)

The first-order condition with respect toXi then gives us the optimal number

of shares held in the risky asset:

Xi =
E
[
P̃1 | Ii

]
−Rf P0

aiVar
[
P̃1 | Ii

] (16.7)
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Equation (16.7) indicates that the demand for the risky asset is increasing in

its expected excess return but declining in its price variance and the investor’s

risk aversion. Note that the CARA utility assumption results in the investor’s

demand for the risky asset being independent of wealth. This simplifies the

derivation of the risky asset’s equilibrium price.

16.1.3 A Competitive Equilibrium

Now consider an equilibrium in which each trader uses his knowledge of the

unconditional distribution of P̃1 along with the conditioning information from

his private signal, yi, so that Ii = {yi}. Then using Bayes rule and the fact

that P̃1 and ỹi are jointly normally distributed with a squared correlation ρ2
i ≡

σ2

σ2 + σ2
i

, the ith trader’s conditional expected value and variance of P̃1 are2

E
[
P̃1 | Ii

]
= m+ ρ2

i (yi −m)

Var
[
P̃1 | Ii

]
= σ2 (1− ρ2

i )

(16.8)

Substituting these into (16.7), we have

Xi =
m+ ρ2

i (yi −m)−Rf P0

ai σ2 (1− ρ2
i )

(16.9)

From the denominator of (16.9), one sees that the individual’s demand for the

risky asset is greater the lower his risk aversion, ai, and the greater the precision

of his signal (the closer is ρi to 1, that is, the lower is σi). Now by aggregating

the individual traders’risky-asset demands for shares and setting the sum equal

to the fixed supply of shares, we can solve for the equilibrium risky-asset price,

2A derivation of (16.8) is given as an end-of-chapter exercise. Note that ρi is the correlation

coeffi cient since cov(P̃1, ỹi)
σ
P̃1

σỹi
= σ2

σ
√
σ2+σ2i

= ρi.
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P0, that equates supply and demand:

X̄ =

n∑
i=1

[
m+ ρ2

i (yi −m)−Rf P0

ai σ2 (1− ρ2
i )

]
(16.10)

=

n∑
i=1

[
m+ ρ2

i (yi −m)

ai σ2 (1− ρ2
i )

]
−

n∑
i=1

[
Rf P0

ai σ2 (1− ρ2
i )

]

or

P0 =
1

Rf

[
n∑
i=1

m+ ρ2
i (yi −m)

ai σ2 (1− ρ2
i )
− X̄

] / [
n∑
i=1

1

ai σ2 (1− ρ2
i )

]
(16.11)

From (16.11) we see that the price reflects a weighted average of the traders’

conditional expectations of the payoffof the risky asset. For example, the weight

on the ith trader’s conditional expectation, m+ ρ2
i (yi −m), is

1

ai σ2 (1− ρ2
i )

/ [
n∑
i=1

1

ai σ2 (1− ρ2
i )

]
(16.12)

The more precise (higher ρi) is trader i’s signal or the lower is his risk aversion

(lower ai), the more aggressively he trades and, as a result, the more that the

equilibrium price reflects his expectations.

16.1.4 A Rational Expectations Equilibrium

The solution for the price, P0, in equation (16.11) can be interpreted as a com-

petitive equilibrium: each trader uses information from his own signal and takes

the price of the risky asset as given in formulating her demand for the risky as-

set. However, this equilibrium neglects the possibility that a trader might infer

information about other traders’signals from the equilibrium price itself, what

practitioners call “price discovery.”In this sense, the previous equilibrium is not

a rational expectations equilibrium. Why? Suppose traders initially formulate
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their demands according to equation (16.9), using only information about their

own signals, and the price in (16.11) results. Then an individual trader could

obtain information about the other traders’signals from the formula for P0 in

(16.11). Hence, this trader would have the incentive to change her demand from

that initially formulated in (16.9). This implies that equation (16.11) would not

be the rational expectations equilibrium price.

Therefore, to derive a fully rational expectations equilibrium, we need to

allow traders’information sets to depend not only on their individual signals,

but on the equilibrium price itself: Ii = {yi, P ∗0 (y)} where y ≡ (y1 y2 ... yn) is

a vector of the traders’individual signals and P ∗0 (y) is the rational expectations

equilibrium price.3

In equilibrium, the aggregate demand for the shares of the risky asset must

equal the aggregate supply, implying

X̄ =

n∑
i=1

E
[
P̃1 | yi, P ∗0 (y)

]
−Rf P ∗0 (y)

aiVar
[
P̃1 | yi, P ∗0 (y)

]
 (16.13)

Now one can show that a rational expectations equilibrium exists when

investors’ signals have independent forecast errors and have equal accuracies.

Specifically, it is assumed that in (16.2) the εi’s are independent and have the

same variance, σ2
i = σ2

ε , for i = 1, ..., n.

Theorem: There exists a rational expectations equilibrium with P ∗0 (y) given

by

P ∗0 (y) =
1− ρ2

Rf
m+

ρ2

Rf
ȳ − σ2 (1− ρ2)

Rf
∑n
i=1

1
ai

X̄ (16.14)

where ȳ ≡ 1

n

n∑
i=1

yi and ρ2 ≡ σ2

σ2 +
σ2ε
n

.

3The theory of a rational expectations equilibrium was introduced by John F. Muth (Muth
1961). Robert E. Lucas won the 1995 Nobel prize in economics for developing and applying
rational expectations theory in several papers, including (Lucas 1972), (Lucas 1976), and
(Lucas 1987).
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Proof: An intuitive outline of the proof is as follows.4 Note that in (16.14),

P ∗0 (y) is a linear function of ȳ with a fixed coeffi cient of ρ2/Rf . Therefore, if a

trader observes P ∗0 (y) (and knows the structure of the model, that is, the other

parameters), then he can invert this price formula to infer the value of ȳ. Now

because all traders’signals were assumed to have equal precision (same σ2
ε), the

average signal, ȳ, is a suffi cient statistic for the information contained in all of

the other signals. Further, because of the assumed independence of the signals,

the precision of this average of signals is proportional to the number of traders,

n. Hence, the average signal would have the same precision as a single signal

with variance σ2ε
n .

Now if individual traders’demands are given by equation (16.9) but where yi

is replaced with ȳ and ρi is replaced with ρ, then by aggregating these demands

and setting them equal to X̄ as in equation (16.10), we end up with the solution

in equation (16.14), which is consistent with our initial assumption that traders

can invert P ∗0 (y) to find ȳ. Hence, P ∗0 (y) in equation (16.14) is the rational

expectations equilibrium price of the risky asset.

Note that the information, ȳ, reflected in the equilibrium price is superior to

any single trader’s private signal, yi. In fact, since ȳ is a suffi cient statistic for

all traders’information, it makes knowledge of any single signal, yi, redundant.

The equilibrium would be the same if all traders received the same signal, ȳ ∼

N(m, σ2 +
σ2ε
n ) or if they all decided to share information on their private signals

among each other before trading commenced.

Therefore, the above equilibrium is a fully revealing rational expectations

equilibrium. The equilibrium price fully reveals all private information, a con-

dition defined as strong-form market effi ciency.5 This result has some inter-

esting features in that it shows that prices can aggregate relevant information

4See the original Grossman article (Grossman 1976) for details.
5This can be compared to semistrong form market effi ciency where asset prices need only

reflect all public information.



16.1. EQUILIBRIUM WITH PRIVATE INFORMATION 481

to help agents make more effi cient investment decisions than would be the case

if they relied solely on their private information and did not attempt to obtain

information from the equilibrium price itself.

However, as shown by Sanford Grossman and Joseph Stiglitz (Grossman

and Stiglitz 1980), this fully revealing equilibrium is not robust to some small

changes in assumptions. Real-world markets are unlikely to be perfectly effi -

cient. For example, suppose each trader needed to pay a tiny cost, c, to obtain

his private signal, yi. With any finite cost of obtaining information, the equi-

librium would not exist, because each individual receives no additional benefit

from knowing yi given that they can observe ȳ from the price. In other words,

a given individual does not personally benefit from having private (inside) in-

formation in a fully revealing equilibrium. In order for individuals to benefit

from obtaining (costly) information, we need an equilibrium where the price is

only partially revealing. For this to happen, there needs to be one or more ad-

ditional sources of uncertainty that add “noise”to individuals’signals, so that

other agents cannot infer them perfectly. We now turn to an example of a noisy

rational expectations equilibrium.

16.1.5 A Noisy Rational Expectations Equilibrium

Let us make the following changes to the Grossman model’s assumptions along

the lines of a model proposed by Bruce Grundy and Maureen McNichols (Grundy

and McNichols 1989). Suppose that each trader begins the period with a ran-

dom endowment of the risky asset. Specifically, trader i possesses εi shares of

the risky asset so that her initial wealth is W0i = εiP0. The realization of εi is

known only to trader i. Across all traders, the endowments, ε̃i, are indepen-

dently and identically distributed with mean µX and variance σ
2
Xn. To simplify

the problem, we assume that the number of traders is very large. If we define
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X̃ as the per capita supply of the risky asset and let n go to infinity, then by the

Central Limit Theorem, X̃ is a random variable distributed N
(
µX , σ

2
X

)
. Note

that in the limit as n→∞, the correlation between ε̃i and X̃ becomes zero, so

that trader i’s observation of her own endowment, ε̃i, provides no information

about the per capita supply, X̃.

Next, let us modify the type of signal received by each trader to allow for a

common error as well as a trader-specific error. Trader i is assumed to receive

the signal

ỹi = P̃1 + ω̃ + ε̃i (16.15)

where ω̃ ∼ N(0, σ2
ω) is the common error independent of P̃1 and, as before, the

idiosyncratic error ε̃i ∼ N(0, σ2
ε) and is independent of P̃1 and ω̃. Because of

the infinite number of traders, it is realistic to allow for a common error so that

traders, collectively, would not know the true payoff of the risky asset.

Recall from the Grossman model that the rational expectations equilibrium

price in (16.14) was a linear function of y and X. In the current model, the

aggregate supply of the risky asset is not fixed, but random. However, this

suggests that the equilibrium price will be of the form

P0 = α0 + α1y + α2X̃ (16.16)

where now y ≡ limn→∞
∑n
i yi/n = P̃1 + ω̃.

Although some assumptions differ, trader i’s demand for the risky asset con-

tinues to be of the form in (16.7). Now recall that in a rational expectations

equilibrium, investor i’s information set includes not only her private informa-

tion but also the equilibrium price: Ii = {yi, P0}. Given the assumed structure

in (16.16) and the assumed normal distribution for P̃1, X̃, and yi, then investor
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i optimally forecasts the end-of-period price as the projection

E
[
P̃1|Ii

]
= β0 + β1P0 + β2yi (16.17)

where

 β1

β2

 =

 α2
1

(
σ2 + σ2

ω

)
+ α2

2σ
2
X α1

(
σ2 + σ2

ω

)
α1

(
σ2 + σ2

ω

)
σ2 + σ2

ω + σ2
ε


−1 α2

1σ
2

σ2


β0 = m− β1 (α0 − α1m− α2µX)− β2m (16.18)

If we then average the Xi in (16.7) over all investors, one obtains

X =
β0 + (β1 −Rf ) P0 + β2y

aVar
[
P̃1 | Ii

] (16.19)

=
β0

aVar
[
P̃1 | Ii

] +
β1 −Rf

aVar
[
P̃1 | Ii

]P0 +
β2

aVar
[
P̃1 | Ii

]y
where a ≡ 1/

(
limn→∞

1
n

∑n
i

1
ai

)
is the harmonic mean of the investors’ risk

aversions. Now note that we can rewrite equation (16.16) as

X = −α0

α2
+

1

α2
P0 −

α1

α2
y (16.20)

In a rational expectations equilibrium, the relationships between the variables

X, P0, and y must be consistent with the individual investors’ expectations.

This implies that the intercepts, and the coeffi cients on P0 and on y, must be

identical in equations (16.19) and (16.20). By matching the intercepts and

coeffi cients, we obtain three nonlinear equations in the three unknowns α0, α1,

and α2. Although explicit solutions for α0, α1, and α2 cannot be obtained, we

can still interpret some of the characteristics of the equilibrium. To see this,
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note that if the coeffi cients on y are equated, one obtains

−α1

α2
=

β2

aVar
[
P̃1 | Ii

] (16.21)

Using (16.18) to substitute for β2 and the variance of the projection of P̃1 on Ii

to substitute for Var
[
P̃1 | Ii

]
, (16.21) can be rewritten as

−α1

α2
=

σ2
X

a
[
σ2
X (σ2

ω + σ2
ε) + (α1/α2)

2
σ2
ωσ

2
ε

] (16.22)

This is a cubic equation in α1/α2. The ratio α1/α2 is a measure of how

aggressively an individual investor responds to his individual private signal,

relative to the average signal, y, reflected in P0. To see this, note that if one

uses (16.7), (16.19), (16.20), and yi − y = ε̃i, the individual’s demand for the

risky asset can be written as

Xi =
a

ai

(
X − α1

α2
ε̃i

)
(16.23)

From (16.23) one sees that if there were no information differences, each in-

vestor would demand a share of the average supply of the risky asset, X, in

proportion to the ratio of the harmonic average of risk aversions to his own

risk aversion. However, unlike the fully revealing equilibrium of the previous

section, the individual investor cannot perfectly invert the equilibrium price to

find the average signal in (16.16) due to the uncertain aggregate supply shift,

X. Hence, individual demands do respond to private information as reflected

by ε̃i. The ratio α1/α2 reflects the simultaneous equation problem faced by

the investor in trying to sort out a shift in supply, X, from a shift in aggregate

demand generated by y. From (16.22) note that if σ2
ω →∞ or σ2

ε →∞, so that

investors’private signals become uninformative, then α1/α2 → 0 and private
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information has no impact on demands or the equilibrium price. If, instead,

σ2
ω = 0, so that there is no common error, then (16.22) simplifies to

−α1

α2
=

1

aσ2
ε

(16.24)

and (16.23) becomes

Xi =
a

ai
X − 1

aiσ2
ε

ε̃i (16.25)

so that an individual’s demand responds to her private signal in direct propor-

tion to the signal’s precision and indirect proportion to her risk aversion.

A general insight of this noisy rational expectations model is that an investor

forms her asset demand based on her private signal but also attempts to extract

the private signals of other investors from the asset’s equilibrium price. We

now study another signal extraction problem but where the signal is reflected in

the quantity of an asset being traded. The problem is one of a market maker

who is charged with setting a competitive market price of an asset when some

trades reflect private information.

16.2 Asymmetric Information, Trading, andMar-

kets

Let us now consider another model with private information that is pertinent

to a security market organized by a market maker. This market maker, who

might be thought of as a specialist on a stock exchange or a security dealer

in an over-the-counter market, sets a risky asset’s price with the recognition

that he may be trading at that price with a possibly better-informed individual.

Albert "Pete" Kyle (Kyle 1985) developed this model, and it has been widely

applied to study market microstructure issues. The model is similar to the
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previous one in that the equilibrium security price partially reveals the better-

informed individual’s private information. Also like the previous model, there is

an additional source of uncertainty that prevents a fully revealing equilibrium,

namely, orders from uninformed “noise,” or “liquidity” traders who provide

camouflage for the better-informed individual’s insider trades. The model’s

results provide insights regarding the factors affecting bid-ask spreads and the

market impact of trades.

16.2.1 Kyle Model Assumptions

The Kyle model is based on the following assumptions.

Asset Return Distribution

The model is a single-period model.6 At the beginning of the period, agents

trade in an asset that has a random end-of-period liquidation value of ν̃ ∼

N
(
p0, σ

2
v

)
.

Liquidity Traders

Noise traders have needs to trade that are exogenous to the model. It is

assumed that they, as a group, submit a “market” order to buy ũ shares of

the asset, where ũ ∼ N
(
0, σ2

u

)
. ũ and ν̃ are assumed to be independently

distributed.7

Better-Informed Traders

The single risk-neutral insider is assumed to have better information than

the other agents. He knows with perfect certainty the realized end-of-period

6Kyle’s paper (Kyle 1985) also contains a multiperiod continuous-time version of his single-
period model. Jiang Wang (Wang 1993) has also constructed a continuous-time asset pricing
model with asymmetrically informed investors who have constant absolute-risk-aversion util-
ity.

7Why rational noise traders submit these orders has been modeled by assuming they
have exogenous shocks to their wealth and need to rebalance their portfolio (Spiegel and
Subrahmanyam 1992) or by assuming that they have uncertainty regarding the timing of
their consumption (Gorton and Pennacchi 1993).
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value of the risky security ν̃ (but not ũ) and chooses to submit a market order

of size x that maximizes his expected end-of-period profits.8

Competitive Market Maker

The single risk-neutral market maker (for example, a New York Stock Ex-

change specialist) receives the market orders submitted by the noise traders

and the insider, which in total equal ũ + x̃. Importantly, the market maker

cannot distinguish what part of this total order consists of orders made by noise

traders and what part consists of the order of the insider. (The traders are

anonymous.) The market maker sets the market price, p, and then takes the

position − (ũ+ x̃) to clear the market. It is assumed that market making is

a perfectly competitive profession, so that the market maker sets the price p

such that, given the total order submitted, his profit at the end of the period is

expected to be zero.

16.2.2 Trading and Pricing Strategies

Since the noise traders’order is exogenous, we need only consider the optimal

actions of the market maker and the insider.

The market maker observes only the total order flow, u + x. Given this

information, he must then set the equilibrium market price p that gives him

zero expected profits. Since his end-of-period profits are − (ν̃ − p) (u+ x), this

implies that the price set by the market maker satisfies

p = E [ν̃ | u+ x] (16.26)

The information on the total order size is important to the market maker. The

more positive the total order size, the more likely it is that x is large due to

8This assumption can be weakened to the case of the insider having uncertainty over ν̃
but having more information on ν̃ than the other traders. One can also allow the insider to
submit “limit” orders, that is, orders that are a function of the equilibrium market price (a
demand schedule), as in another model by Kyle (Kyle 1989).
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the insider knowing that ν is greater than p0. Thus, the market maker would

tend to set p higher than otherwise. Similarly, the more negative is u + x, the

more likely it is that x is low because the insider knows ν is below p0 and is

submitting a sell order. In this case, the market maker would tend to set p

lower than otherwise. Thus, the pricing rule of the market maker is a function

of x+ u, that is, P (x+ u).

Since the insider sets x, it is an endogenous variable that depends on ν̃.

The insider chooses x to maximize his expected end-of-period profits, π̃, given

knowledge of ν and the way that the market maker behaves in setting the

equilibrium price:

max
x
E [π̃ | ν] = max

x
E [(ν − P (x+ ũ))x | ν] (16.27)

An equilibrium in this model is a pricing rule chosen by the market maker

and a trading strategy chosen by the insider such that 1) the insider maximizes

expected profits, given the market maker’s pricing rule; 2) the market maker

sets the price to earn zero expected profits, given the trading strategy of the

insider; and 3) the insider and market maker have rational expectations. That

is, the equilibrium is a fixed point where each agent’s actual behavior (e.g.,

pricing rule or trading strategy) is that which is expected by the other.

Insider’s Trading Strategy

Suppose the market maker chooses a market price that is a linear function of

the total order flow, P (x+ u) = µ+λ (x+ u). We will later argue that a linear

pricing rule is optimal. If this is so, what is the insider’s choice of x? From

(16.27) we have
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max
x
E [(ν − P (x+ ũ))x | ν] = max

x
E [(ν − µ− λ (x+ ũ))x | ν] (16.28)

= max
x

(ν − µ− λx)x, since E [ũ] = 0

Thus, the solution to the insider’s problem in (16.28) is

x = α+ βν (16.29)

where α = − µ
2λ and β = 1

2λ . Therefore, if the market maker uses a linear pricing

rule, the optimal trading strategy for the insider is a linear trading rule.

Market Maker’s Pricing Strategy

Next, let us return to the market maker’s problem of choosing the market price

that, conditional on knowing the total order flow, results in a competitive (zero)

expected profit. Given the assumption that market making is a perfectly com-

petitive profession, a market maker needs to choose the “best”possible estimate

of E [ν̃ | u+ x] in setting the price p = E [ν̃ | u+ x]. The maximum likelihood

estimate of E [ν̃ | u+ x] is best in the sense that it attains maximum effi ciency

and is also the minimum-variance unbiased estimate.

Note that if the insider follows the optimal trading strategy, which according

to equation (16.29) is x = α + βν̃, then from the point of view of the market

maker, ν̃ and y ≡ ũ+ x = ũ+α+ βν̃ are jointly normally distributed. Because

ν and y are jointly normal, the maximum likelihood estimate of the mean of

ν conditional on y is linear in y, that is, E [ν̃ | y] is linear in y.9 Hence,

the previously assumed linear pricing rule is, in fact, optimal in equilibrium.

Therefore, the market maker should use the maximum likelihood estimator,

9Earlier in this chapter, we saw an example of this linear relationship in equation (16.8).
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which in the case of ν and y being normally distributed is equivalent to the

“least squares”estimator. This estimator minimizes

E
[
(ν̃ − P (y))

2
]

= E
[
(ν̃ − µ− λy)

2
]

(16.30)

= E
[
(ν̃ − µ− λ (ũ+ α+ βν̃))

2
]

Thus, the optimal pricing rule equals µ+ λy, where µ and λ minimize

min
µ,λ

E
[
(ν̃ (1− λβ)− λũ− µ− λα)

2
]

(16.31)

Recalling the assumptions E [ν] = p0, E
[
(ν − p0)

2
]

= σ2
v, E [u] = 0, E

[
u2
]

=

σ2
u, and E [uν] = 0, the objective function (16.31) can be written as

min
µ,λ

(1− λβ)
2 (
σ2
v + p2

0

)
+ (µ+ λα)

2
+ λ2σ2

u − 2 (µ+ λα) (1− λβ) p0 (16.32)

The first-order conditions with respect to µ and λ are

µ = −λα+ p0 (1− λβ) (16.33)

0 = −2β (1− λβ)
(
σ2
v + p2

0

)
+ 2α (µ+ λα) + 2λσ2

u

−2p0 [−β (µ+ λα) + α (1− λβ)] (16.34)

Substituting µ+λα = p0 (1− λβ) from (16.33) into (16.34), we see that (16.34)

simplifies to
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λ =
βσ2

v

β2σ2
v + σ2

u

(16.35)

Substituting in for the definitions α = − µ
2λ and β = 1

2λ in (16.33) and (16.35),

we have

µ = p0 (16.36)

λ = 1
2

σv
σu

(16.37)

In summary, the equilibrium price is

p = p0 + 1
2

σv
σu

(ũ+ x̃) (16.38)

where the equilibrium order submitted by the insider is

x =
σu
σv

(ν̃ − p0) (16.39)

16.2.3 Analysis of the Results

From (16.39), we see that the greater the volatility (amount) of noise trading,

σu, the larger is the magnitude of the order submitted by the insider for a given

deviation of ν from its unconditional mean. Hence, the insider trades more

actively on his private information the greater the “camouflage” provided by

noise trading. Greater noise trading makes it more diffi cult for the market

maker to extract the “signal” of insider trading from the noise. Note that if

equation (16.39) is substituted into (16.38), one obtains
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p = p0 + 1
2

σv
σu
ũ+ 1

2 (ν̃ − p0) (16.40)

= 1
2

(
σv
σu
ũ+ p0 + ν̃

)

Thus, we see that only one-half of the insider’s private information, 1
2 ν̃,

is reflected in the equilibrium price, so that the price is not fully revealing.10

To obtain an equilibrium of incomplete revelation of private information, it is

necessary to have a second source of uncertainty, namely, the amount of noise

trading.

Using (16.39) and (16.40), we can calculate the insider’s expected profits:

E [π̃] = E [x (ν − p)] = E

[
σu
σv

(ν̃ − p0) 1
2

(
ν − p0 −

σv
σu
ũ

)]
(16.41)

Conditional on knowing ν, that is, after learning the realization of ν at the

beginning of the period, the insider expects profits of

E [π̃ | ν] = 1
2

σu
σv

(ν − p0)
2 (16.42)

Hence, the larger ν’s deviation from p0, the larger the expected profit. Uncon-

ditional on knowing ν̃, that is, before the start of the period, the insider expects

a profit of

E [π̃] = 1
2

σu
σv
E
[
(ν̃ − p0)

2
]

= 1
2σuσv (16.43)

which is proportional to the standard deviations of noise traders’orders and the

end-of-period value of ν.

10A fully revealing price would be p = ν̃.
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Since, by assumption, the market maker sets the security price in a way that

gives him zero expected profits, the expected profits of the insider equals the

expected losses of the noise traders. In other words, it is the noise traders that

lose, on average, from the presence of the insider. Due to the market maker’s

inability to distinguish between informed (insider) and uninformed (noise trader)

orders, they are treated the same under his pricing rule. Thus, on average, noise

traders’buy (sell) orders are executed at a higher (lower) price than p0.

From equation (16.38), we see that λ = 1
2
σv
σu
is the amount that the market

maker raises the price when the total order flow, (u+ x), goes up by 1 unit.11

This can be thought of as relating to the security’s bid-ask spread, that is, the

difference in the price for sell orders versus buy orders, although here sell and

buy prices are not fixed but are a function of the order size since the pricing rule

is linear. Moreover, since the amount of order flow necessary to raise the price

by $1 equals 1/λ = 2σuσv , the model provides a measure of the “depth”of the

market, or market “liquidity.”The higher is the proportion of noise trading to

the value of insider information, σuσv , the deeper, or more liquid, is the market.

Intuitively, the more noise traders relative to the value of insider information,

the less the market maker needs to adjust the price in response to a given order,

since the likelihood of the order being that of a noise trader, rather than an

insider, is greater. The more noise traders there are (that is, the greater is σu),

the greater is the expected profit of the insider (see equation (16.43)) and the

greater is the total expected loss of the noise traders. However, the expected

loss per individual noise trader falls with the greater level of noise trading.12

11 It is now common in the market microstructure literature to refer to this measure of order
flow and liquidity as "Kyle’s lambda."
12Gary Gorton and George Pennacchi (Gorton and Pennacchi 1993) derive this result by

modeling individual liquidity traders.
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16.3 Summary

The models considered in this chapter analyze the degree to which private infor-

mation about an asset’s future payoff or value is reflected in the asset’s current

price. An investor’s private information affects an asset’s price by determining

the investor’s desired demand (long or short position) for the asset, though the

investor’s demand also is tempered by risk aversion. More subtly, we saw that a

rational investor can also learn about the private information of other investors

through the asset’s price itself, and this price discovery affects the investors’

equilibrium demands. Indeed, under some circumstances, the asset’s price may

fully reveal all relevant private information such that any individual’s private

information becomes redundant.

Perhaps more realistically, there are non-information-based factors that af-

fect the net supply or demand for an asset. These “noise” factors prevent in-

vestors from perfectly inferring the private information signals of others, result-

ing in an asset price that is less than fully revealing. Noise provides camouflage

for investors with private information, allowing these traders to profit from pos-

sessing such information. Their profits come at the expense of liquidity traders

since the greater the likelihood of private information regarding a security, the

larger will be the security’s bid-ask spread. Hence, this theory predicts that a

security’s liquidity is determined by the degree of noise (non-information-based)

trading relative to insider (private-information-based) trading.

16.4 Exercises

1. Show that the maximization problem in objective function (16.6) is equiv-

alent to the maximization problem in (16.4).
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2. Show that the results in (16.8) can be derived from Bayes rule and the

assumption that P̃1 and ỹi are normally distributed.

3. Consider a special case of the Grossman model. Traders can choose be-

tween holding a risk-free asset, which pays an end-of-period return of Rf ,

and a risky asset that has a beginning-of-period price of P0 per share and

an end-of-period payoff (price) of P̃1 per share. The unconditional distri-

bution of P̃1 is assumed to be N
(
m,σ2

)
. The risky asset is assumed to

be a derivative security, such as a futures contract, so that its net supply

equals zero.

There are two different traders who maximize expected utility over end-of-

period wealth, W̃1i, i = 1, 2. The form of the ith trader’s utility function

is

Ui

(
W̃1i

)
= −e−aiW̃1i , ai > 0

At the beginning of the period, the ith trader observes yi, which is a noisy

signal of the end-of-period value of the risky asset

yi = P̃1 + ε̃i

where εi ∼ N
(
0, σ2

ε

)
and is independent of P̃1. Note that the variances of

the traders’signals are the same. Also assume E [ε1ε2] = 0.

a. Suppose each trader does not attempt to infer the other trader’s informa-

tion from the equilibrium price, P0. Solve for each of the traders’demands

for the risky asset and the equilibrium price, P0.
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b. Now suppose each trader does attempt to infer the other’s signal from the

equilibrium price, P0. What will be the rational expectations equilibrium

price in this situation? What will be each of the traders’ equilibrium

demands for the risky asset?

4. In the Kyle model (Kyle 1985), replace the original assumption Better-

Informed Traders with the following new one:

The single risk-neutral insider is assumed to have better information than

the other agents. He observes a signal of the asset’s end-of-period value

equal to

s = ṽ + ε̃

where ε̃ ∼ N
(
0, σ2

s

)
and ε̃ is distributed independently of ũ and ν̃. The

insider does not observe ũ but chooses to submit a market order of size x

that maximizes his expected end-of-period profits.

a. Suppose that the market maker’s optimal price-setting rule is a linear

function of the order flow

p = µ+ λ (u+ x)

Write down the expression for the insider’s expected profits given this

pricing rule.

b. Take the first-order condition with respect to x and solve for the insider’s

optimal trading strategy as a function of the signal and the parameters of

the market maker’s pricing rule.

c. Given the form of the insider’s optimal trading strategy in the previous
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question, solve for the parameters µ and λ of the market maker’s optimal

price-setting rule p = µ + λ (u+ x). How does the response of the price

to a unit change in the order flow, λ, vary with the insider’s signal error

variance, σ2
s?

5. Consider a variation of the Kyle model (Kyle 1985). Replace the orginal

assumption Liquidity Traders with the following new one:

Noise traders have needs to trade that are exogenous to the model. It is

assumed that they, as a group, submit a “market”order to buy ũ shares

of the asset, where ũ ∼ N
(
0, σ2

u

)
. ũ and ν̃ are assumed to be correlated

with correlation coeffi cient ρ.

Note that the only change is that, instead of the original Kyle model’s

assumption that ũ and ν̃ are uncorrelated, they are now assumed to have

nonzero correlation coeffi cient ρ.

a. Suppose that the market maker’s optimal price-setting rule is a linear

function of the order flow

p = µ+ λ (u+ x)

Write down the expression for the insider’s expected profits given this

pricing rule. Hint: to find the conditional expectation of ũ, it might be

helpful to write it as a weighted average of ṽ and another normal random

variable uncorrelated with ṽ.

b. Take the first-order condition with respect to x and solve for the insider’s

optimal trading strategy as a function of v and the parameters of the

market maker’s pricing rule.
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c. For a given pricing rule (given µ and λ) and a realization of v > p0, does

the insider trade more or less when ρ > 0 compared to the case of ρ = 0?

What is the intuition for this result? How might a positive value for ρ be

interpreted as some of the liquidity traders being better-informed traders?

What insights might this result have for a market with multiple insiders

(informed traders)?



Chapter 17

Models of the Term

Structure of Interest Rates

This chapter provides an introduction to the main approaches for modeling the

term structure of interest rates and for valuing fixed-income derivatives. It is

not meant to be a comprehensive review of this subject. The literature on term

structure models is voluminous, and many surveys on this topic, including (Dai

and Singleton 2004), (Dai and Singleton 2003), (Maes 2003), (Piazzesi 2005a),

(Rebonato 2004), and (Yan 2001), have appeared in recent years. The more

modest objective of this chapter is to outline the major theories for valuing

default-free bonds and bond derivatives, such as Treasury bills, notes, bonds,

and their derivatives. The next chapter analyzes the valuation of default-risky

bonds.

This chapter is comprised of two main sections. The first discusses models

used to derive the equilibrium bond prices of different maturities in terms of

particular state variables. One way to think about these models is that the

state variables are the models’“input,”while the values of different maturity

499
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bonds are the models’“output.” The second section covers models that value

fixed-income derivatives, such as interest rate caps and swaptions, in terms of

a given maturity structure of bond prices. In contrast, these models take the

term structure of observed bond prices as the input and have derivative values

as the models’output.

17.1 Equilibrium Term Structure Models

Equilibrium term structure models describe the prices (or, equivalently, the

yields) of different maturity bonds as functions of one or more state variables

or “factors.” The Vasicek model (Vasicek 1977), introduced in Chapter 9 (see

equation 9.41), and the Cox, Ingersoll, and Ross model (Cox, Ingersoll, and Ross

1985b), presented in Chapter 13 (see equation 13.51), were examples of single-

factor models. The single factor in the Vasicek model was the instantaneous-

maturity interest rate, denoted r (t), which was assumed to follow the Ornstein-

Uhlenbeck process (9.30). In Cox, Ingersoll, and Ross’s one-factor model, the

factor was a variable that determined the expected returns of the economy’s

production processes. In equilibrium, the instantaneous-maturity interest rate

was proportional to this factor and inherited its dynamics. This interest rate

followed the square root process in equation (13.49).

Empirical evidence finds that term structure movements are driven by mul-

tiple factors.1 In many multifactor models, the factors are latent (unobserved)

variables that are identified by data on the yields of different maturity bonds.

Recently, however, economists have renewed their interest in models that link

term structure factors with observed macroeconomic variables.2 A motivation
1For example, a principal components analysis by Robert Litterman and Jose Scheinkman

(Litterman and Scheinkman 1988) finds that at least three factors are required to describe
U.S. Treasury security movements. They relate these factors to the term structure’s level,
slope, and curvature.

2Francis Diebold, Monika Piazzesi, and Glenn Rudebusch (Diebold, Piazzesi, and
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for these models is to better understand the relationship between the term struc-

ture of interest rates and the macroeconomy, with the potential of using term

structure movements to forecast macroeconomic cycles.

Given the importance of multiple factors in term structure dynamics, let us

generalize the pricing relationships for default-free, zero-coupon bonds that we

developed in earlier chapters. We consider a situation where multiple factors

determine bond prices and assume that there are n state variables, xi, i =

1, ..., n, that follow the multivariate diffusion process

dx = a (t,x) dt+ b (t,x) dz (17.1)

where x = (x1...xn)
′; a (t,x) is an n× 1 vector; b (t,x) is an n× n matrix; and

dz = (dz1...dzn)
′ is an n× 1 vector of independent Brownian motion processes

so that dzidzj = 0 for i 6= j.3 This specification permits any general correlation

structure for the state variables. Note that the instantaneous covariance matrix

of the state variables is given by b (t,x) b (t,x)
′.

Define P (t, T,x) as the date t price of a default-free, zero-coupon bond that

pays 1 at date T . Itô’s lemma gives the process followed by this bond’s price:

dP (t, T,x) /P (t, T,x) = µp (t, T,x) dt+ σp (t, T,x)
′
dz (17.2)

where the bond’s expected rate of return equals

µp (t, T,x) =
(
a (t,x)

′
Px + Pt + 1

2Trace
[
b (t,x) b (t,x)

′
Pxx

])
/P (t, T,x)

(17.3)

Rudebusch 2005) discuss empirical estimation of term structure models using macroeconomic
factors. An example of this approach is given by Andrew Ang and Monika Piazzesi (Ang and
Piazzesi 2003).

3As discussed in Chapter 10, the independence assumption is not important. If there are
correlated sources of risk (Brownian motions), they can be redefined by a linear transformation
to be represented by n orthogonal risk sources.
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and σp (t, T,x) is an n× 1 vector of the bond’s volatilities equal to

σp (t, T,x) = b (t,x)
′
Px/P (t, T,x) (17.4)

and where Px is an n× 1 vector whose ith element equals the partial derivative

Pxi ; Pxx is an n × n matrix whose i, jth element is the second-order partial

derivative Pxixj ; and Trace[A] is the sum of the diagonal elements of a square

matrix A.

Similar to the Black-Scholes hedging argument discussed in Chapter 9 and

applied to derive the Vasicek model, we can form a hedge portfolio of n+1 bonds

having distinctly different maturities. By appropriately choosing the portfolio

weights for these n + 1 bonds, the n sources of risk can be hedged so that the

portfolio generates a riskless return. In the absence of arbitrage, this portfolio’s

return must equal the riskless rate, r (t,x). Making this no-arbitrage restriction

produces the implication that each bond’s expected rate of return must satisfy

µp (t, T,x) = r (t,x) + Θ (t,x) ′σp (t, T,x) (17.5)

where Θ (t,x) = (θ1...θn)
′ is the n×1 vector of market prices of risks associated

with each of the Brownian motions in dz = (dz1...dzn)
′. By equating (17.5)

to the process for µp (t, T,x) given by Itô’s lemma in (17.3), we obtain the

equilibrium partial differential equation (PDE)

1
2Trace

[
b (t,x) b (t,x)

′
Pxx

]
+ [a (t,x)− b (t,x) Θ]

′
Px − rP + Pt = 0 (17.6)

Given functional forms for a (t,x), b (t,x), Θ (t,x), r (t,x), this PDE can be

solved subject to the boundary condition P (T, T,x) = 1.

Note that equation (17.6) depends on the expected changes in the factors

under the risk-neutral measure Q , a (t,x)− b (t,x) Θ, rather than the factors’
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expected changes under the physical measure P , a (t,x). Hence, to price bonds,

one could simply specify only the factors’risk-neutral processes.4 This insight

is not surprising, because we saw in Chapter 10 that the Feynman-Kac solution

to this PDE is the risk-neutral pricing equation (10.61):

P (t, T,x) = Êt

[
e−
∫ T
t
r(s,x)ds × 1

]
(17.7)

In addition to the pricing relations (17.6) and (17.7), we saw that a third pricing

approach can be based on the pricing kernel that follows the process

dM/M = −r (t,x) dt−Θ (t,x)
′
dz (17.8)

In this case, pricing can be accomplished under the physical measure based on

the formula

P (t, T,x) = Et

[
M (T )

M (t)
× 1

]
(17.9)

Thus far, we have placed few restrictions on the factors and their relationship

to the short rate, r (t,x), other than to assume that the factors follow the Markov

diffusion processes (17.1). Let us next consider some popular parametric forms.

17.1.1 Affi ne Models

We start with models in which the yields of zero-coupon bonds are linear or

“affi ne” functions of state variables. This class of models includes those of

Oldrich Vasicek (Vasicek 1977) and John Cox, Jonathan Ingersoll, and Stephen

Ross (Cox, Ingersoll, and Ross 1985b). Affi ne models are attractive because

they lead to bond price formulas that are relatively easy to compute and because

the parameters of the state variable processes can often be estimated using

4However, if the factors are observable variables for which data are available, it may be
necessary to specify their physical processes if empirical implementations of the model require
estimates for a (x, t) and b (x, t).
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relatively straightforward econometric techniques.

Recall that a zero-coupon bond’s continuously compounded yield, Y (t, T,x),

is defined from its price by the relation

P (t, T,x) = e−Y (t,T,x)(T−t) (17.10)

One popular class of models assumes that zero-coupon bonds’continuously com-

pounded yields are affi ne functions of the factors. Defining the time until

maturity as τ ≡ T − t, this assumption can be written as

Y (t, T,x) τ = A (τ) + B (τ)
′
x (17.11)

where A (τ) is a scalar function and B (τ) is an n × 1 vector of functions that

do not depend on the factors, x. Because at maturity P (T, T,x) = 1, equation

(17.11) implies that A (0) = 0 and B (0) is an n × 1 vector of zeros. Another

implication of (17.11) is that the short rate is also affi ne in the factors since

r (t,x) = lim
T→t

Y (t, T,x) = lim
τ→0

A (τ) + B (τ)
′
x

τ
(17.12)

so that we can write r (t,x) = α + β′x, where α = ∂A (0) /∂τ is a scalar and

β = ∂B (0) /∂τ is an n× 1 vector of constants.

Under what conditions regarding the factors’dynamics would the no-arbitrage,

equilibrium bond yields be affi ne in the state variables? To answer this, let us

substitute the affi ne yield assumption of (17.10) and (17.11) into the general

no-arbitrage PDE of (17.6). Doing so, one obtains

1
2B (τ)

′
b (t,x) b (t,x)

′
B (τ)− [a (t,x)− b (t,x) Θ]

′
B (τ)

+∂A(τ)
∂τ + ∂B(τ)′

∂τ x = α+ β′x
(17.13)
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Darrell Duffi e and Rui Kan (Duffi e and Kan 1996) characterize suffi cient condi-

tions for a solution to equation (17.13). Specifically, two of the conditions are

that the factors’risk-neutral instantaneous expected changes and variances are

affi ne in x. In other words, if the state variables’risk-neutral drifts and vari-

ances are affi ne in the state variables, so are the equilibrium bond price yields.

These conditions can be written as

a (t,x)− b (t,x) Θ = κ (x−x) (17.14)

b (t,x) = Σ
√

s (x) (17.15)

where x is an n×1 vector of constants, κ and Σ are n×n matrices of constants,

and s (x) is an n× n diagonal matrix with the ith diagonal term

si (x) = soi + s′1ix (17.16)

where soi is a scalar constant and s1i is an n× 1 vector of constants. Now, be-

cause the state variables’covariance matrix equals b (t,x) b (t,x)
′

= Σs (x) Σ′,

additional conditions are needed to ensure that this covariance matrix remains

positive definite for all possible realizations of the state variable, x. Qiang Dai

and Kenneth Singleton (Dai and Singleton 2000) and Darrell Duffi e, Damir Fil-

ipovic, and Walter Schachermayer (Duffi e, Filipovic, and Schachermayer 2002)

derive these conditions.5

Given (17.14), (17.15), and (17.16), the partial differential equation in (17.13)

can be rewritten as
5These conditions can have important consequences regarding the correlation between the

state variables. For example, if the state variables follow a multivariate Ornstein-Uhlenbeck
process, so that the model is a multifactor extension of the Vasicek model given in (9.41),
(9.42), and (9.43), then any general correlation structure between the state variables is per-
mitted. Terence Langetieg (Langeteig 1980) has analyzed this model. However, if the state
variables follow a multivariate square root process, so that the model is a multifactor exten-
sion of the Cox, Ingersoll, and Ross model given in (13.51), (13.52), and (13.53), then the
correlation between the state variables must be nonnegative.
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1
2B (τ)

′
Σs (x) Σ′B (τ)− [κ (x−x)]

′
B (τ) +

∂A (τ)

∂τ
+
∂B (τ)

′

∂τ
x

= α+ β′x (17.17)

Note that this equation is linear in the state variables, x. For the equation to

hold for all values of x, the constant terms in the equation must sum to zero

and the terms multiplying each element of x must also sum to zero. These

conditions imply

∂A (τ)

∂τ
= α+ (κx)

′
B (τ)− 1

2

n∑
i=1

[Σ′B (τ)]
2
i s0i (17.18)

∂B (τ)

∂τ
= β − κ′B (τ)− 1

2

n∑
i=1

[Σ′B (τ)]
2
i s1i (17.19)

where [Σ′B (τ)]i is the i
th element of the n × 1 vector Σ′B (τ). Equations

(17.18) and (17.19) are a system of first-order ordinary differential equations

that can be solved subject to the boundary conditions A (0) = 0 and B (0) = 0.

In some cases, such as a multiple state variable version of the Vasicek model

(where s1i = 0 ∀i), there exist closed-form solutions.6 In other cases, fast

and accurate numerical solutions to these ordinary differential equations can be

computed using techniques such as a Runge-Kutta algorithm.

While affi ne term structure models require that the state variables’ risk-

neutral expected changes be affi ne in the state variables, there is more flexibility

regarding the state variables’drifts under the physical measure. Note that the

state variables’expected change under the physical measure is

a (t,x) = κ (x−x) + Σ
√

s (x)Θ (17.20)

6Examples include (Langeteig 1980), (Pennacchi 1991), and (Jegadeesh and Pennacchi
1996).
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so that specification of the market prices of risk, Θ, is required to determine

the physical drifts of the state variables. Qiang Dai and Kenneth Singleton

(Dai and Singleton 2000) study the “completely affi ne” case where both the

physical and risk-neutral drifts are affi ne, while Gregory Duffee (Duffee 2002)

and Jefferson Duarte (Duarte 2004) consider extensions of the physical drifts

that permit nonlinearities.7 Because the means, volatilities, and risk premia of

bond prices estimated from time series data depend on the physical moments

of the state variables, the flexibility in choosing the parametric form for Θ can

allow the model to better fit historical bond price data.

Example: Independent Factors

Consider the special case where κ and Σ are n × n diagonal matrices and the

n × 1 vector s1i has all of its elements equal to zero except for its ith element.

These assumptions imply that the risk-neutral drift term of each state variable

depends only on its own level and that the state variables’covariance matrix,

b (t,x) b (t,x)
′

= Σs (x) Σ′, is diagonal. Thus, this case is one where the

processes for the state variables are independent of each other. Further, for

simplicity, let r (t,x) = α + β′x = e′x, so that α = 0 and β = e is an n × 1

vector of ones.8 Given these parametric restrictions, the interest rate is the sum

of independent state variables and the bond valuation equation (17.7) becomes

7Dai and Singleton analyze Θ =
√

s (x)λ1 where λ1 is an n × 1 vector of constants.
Duffee considers the “essentially affi ne” modeling of the market price of risk of the form

Θ =
√

s (x)λ1 +
√

s (x)−λ2x, where s (x)− is an n × n diagonal matrix whose ith element
equals

(
soi + s′1ix

)−1 if inf
(
soi + s′1ix

)
> 0 and zero otherwise, and λ2 is an n×n matrix of

constants. This specification allows time variation in the market prices of risk for Gaussian
state variables (such as state variables that follow Ornstein-Uhlenbeck processes), allowing
their signs to switch over time. Duarte extends Duffee’s modeling to add a square root term.

This “semiaffi ne square root”model takes the form Θ = Σ−1λ0 +
√

s (x)λ1 +
√

s (x)−λ2x

where λ0 is an n×1 vector of constants. See also work by Patrick Cheridito, Damir Filipovic,
and Robert Kimmel (Cheridito, Filipovic, and Kimmel 2003) for extensions in modeling the
market price of risk for affi ne models.

8The assumptions regarding α and β are not restrictive to the results derived below. A
nonzero α would add a multiplicative constant to bond prices and each state variable can be
normalized by its β element to give a similar result.
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P (t, T,x) = Êt

[
e−
∫ T
t
r(s,x)ds × 1

]
(17.21)

= Êt

[
e−
∫ T
t

e′xds
]

=
n∏
i=1

Êt

[
e−
∫ T
t
xi(s)ds

]

where the last line in (17.21) results from the independence assumption. The

insight from (17.21) is that this multifactor term structure model can be inter-

preted as the product of n single-factor term structure models, where each state

variable, xi, is analogous to a different interest rate. For example, if si (x) = soi,

so that xi follows an Ornstein-Uhlenbeck process, then Êt
[
exp

(
−
∫ T
t
xi (s) ds

)]
=

exp [Ai (τ) +Bi (τ)xi] where the functions Ai (τ) and Bi (τ) solve simplified ver-

sions of (17.18) and (17.19) and take similar forms to the Vasicek model formula

in (9.41).9 Another state variable, say, xj , could have sj (x) = s1jxj , so that

it follows a square root constant elasticity of variance process. For this state

variable, Êt
[
exp

(
−
∫ T
t
xj (s) ds

)]
= exp [Aj (τ) +Bj (τ)xj ] where the func-

tions Aj (τ) and Bj (τ) satisfy simple versions of (17.18) and (17.19) and have

solutions similar to the CIR model formula in (13.51).10 Thus, using these

prior single-factor model results, (17.21) can be written as

P (t, T,x) =
n∏
i=1

exp [Ai (τ) +Bi (τ)xi] (17.22)

Whether the assumption that state variables are independent is reasonable de-

pends on the particular empirical context in which a term structure model is

being used. Typically, there is a trade-off between more general correlation

structures and model simplicity. Gaussian state variables (e.g., those following

9Due to slightly different notation, Ai (τ) equals ln[A (τ)] in (9.43) and Bi (τ) equals −B (τ)
in (9.42).
10Because of slightly different notation, Aj (τ) equals ln[A (τ)] in (13.52) and Bj (τ) equals
−B (τ) in (13.53).
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an Ornstein-Uhlenbeck process) allow for general correlation structures but do

not restrict the state variables from becoming negative. State variables follow-

ing square root processes can be restricted to maintain positive values but may

be incapable of displaying negative correlation.

17.1.2 Quadratic Gaussian Models

Another class of models assumes that the yields of zero-coupon bonds are

quadratic functions of normally distributed (Gaussian) state variables. Markus

Leippold and Liuren Wu (Leippold and Wu 2002) provide a detailed discussion

of these models. We can express the assumption that yields are a quadratic

function of state variables by stating

Y (t, T,x) τ = A (τ) + B (τ)
′
x + x′C (τ) x (17.23)

where C (τ) is an n×n matrix and, with no loss of generality, can be assumed to

be symmetric. Similar to our analysis of affi ne models, since P (T, T,x) = 1, we

must have A (0) = 0, B (0) equal to an n×1 vector of zeros, andC (0) equal to an

n×nmatrix of zeros. In addition, the yield on a bond of instantaneous maturity

must be of the form r (t,x) = α + β′x + x′γx, where α = ∂A (0) /∂τ , β =

∂B (0) /∂τ , and γ = ∂C (0) /∂τ is an n×n symmetric matrix of constants. Note

that if γ is a positive semidefinite matrix and α− 1
4β
′γ−1β ≥ 0, then the interest

rate can be restricted from becoming negative.11 Substituting P (t, T,x) =

exp
(
−A (τ)−B (τ)

′
x− x′C (τ) x

)
into the general partial differential equation

(17.6), we obtain

11The lower bound for r (t) is α− 1
4
β′γ−1β, which occurs when x = − 1

2
γ−1β.
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1
2

[
[B (τ) + 2C (τ) x]

′
b (t,x) b (t,x)

′
[B (τ) + 2C (τ) x]

]
−Trace

[
b (t,x)

′
C (τ) b (t,x)

]
− [a (t,x)− b (t,x) Θ]

′
[B (τ) + 2C (τ) x]

+
∂A (τ)

∂τ
+
∂B (τ)

′

∂τ
x+ x′

∂C (τ)

∂τ
x

= α+ β′x + x′γx (17.24)

In addition to yields being quadratic in the state variables, quadratic Gaussian

models then assume that the vector of state variables, x, has a multivariate

normal (Gaussian) distribution. Specifically, it is assumed that x follows a

multivariate Ornstein-Uhlenbeck process:

a (t,x)− b (t,x) Θ = κ (x−x) (17.25)

b (t,x) = Σ (17.26)

Substituting these assumptions into the partial differential equation (17.24), one

obtains

1
2

[
[B (τ) + 2C (τ) x]

′
ΣΣ′ [B (τ) + 2C (τ) x]

]
−Trace [Σ′C (τ) Σ]− [κ (x−x)]

′
[B (τ) + 2C (τ) x]

+
∂A (τ)

∂τ
+
∂B (τ)

′

∂τ
x+ x′

∂C (τ)

∂τ
x

= α+ β′x + x′γx (17.27)

For this equation to hold for all values of x, it must be the case that the sums of

the equation’s constant terms, the terms proportional to the elements of x, and

the terms that are products of the elements of x must each equal zero. This
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leads to the system of first-order ordinary differential equations

∂A (τ)

∂τ
= α+ (κx)

′
B (τ)− 1

2B (τ)
′
ΣΣ′B (τ) + Trace [Σ′C (τ) Σ]

(17.28)

∂B (τ)

∂τ
= β − κ′B (τ)− 2C (τ)

′
Σ′ΣB (τ) + 2C (τ)

′
κx (17.29)

∂C (τ)

∂τ
= γ−2κ′C (τ)− 2C (τ)

′
ΣΣ′C (τ) (17.30)

which are solved subject to the aforementioned boundary conditions, A (0) = 0,

B (0) = 0, and C (0) = 0.

Dong-Hyun Ahn, Robert Dittmar, and Ronald Gallant (Ahn, Dittmar, and

Gallant 2002) show that the models of Francis Longstaff (Longstaff1989), David

Beaglehole and Mark Tenney (Beaglehole and Tenney 1992), and George Con-

stantinides (Constantinides 1992) are special cases of quadratic Gaussian mod-

els. They also demonstrate that since quadratic Gaussian models allow a nonlin-

ear relationship between yields and state variables, these models can outperform

affi ne models in explaining historical bond yield data.

However, quadratic Gaussian models are more diffi cult to estimate from

historical data because, unlike affi ne models, there is not a one-to-one mapping

between bond yields and the elements of the vector of state variables. For

example, suppose that at a given point in time, we observed bond yields of

n different maturities, say, Y (t, Ti,x), i = 1, ..., n. Denoting τ i = Ti − t, if

yields are affi ne functions of the state variables, then Y (t, Ti,x) τ i = A (τ i) +

B (τ i)
′
x, i = 1, .., n, represents a set of n linear equations in the n elements

of the state variable x. Solving these equations for the state variables x1,

x2, ..., xn effectively allows one to observe the individual state variables from

the observed yields. By observing a time series of these state variables, the

parameters of their physical process could be estimated.
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This approach cannot be used when yields are quadratic functions of the

state variables since with Y (t, Ti,x) τ i = A (τ i) + B (τ i)
′
x + x′C (τ i) x, there

is not a one-to-one mapping between yields and state variables x1, x2, ..., xn.

There are multiple values of the state variable vector, x, consistent with the set

of yields.12 This diffi culty requires a different approach to inferring the most

likely state variable vector. Ahn, Dittmar, and Gallant use an effi cient method

of moments technique that simulates the state variable, x, to estimate the state

variable vector that best fits the data.

17.1.3 Other Equilibrium Models

Term structure models have been modified to allow state variable processes to

differ from strict diffusions. Such models can no longer rely on the Black-Scholes

hedging argument to identify market prices of risk and a risk-neutral pricing

measure. Because fixed-income markets may not be dynamically complete,

these models need to make additional assumptions regarding the market prices

of risks that cannot be hedged.

A number of researchers, including Chang-Mo Ahn and Howard Thomp-

son (Ahn and Thompson 1988), Sanjiv Das and Silverio Foresi (Das and Foresi

1996), Darrell Duffi e, Jun Pan, and Kenneth Singleton (Duffi e, Pan, and Singleton

2000), Sanjiv Das (Das 2002), and George Chacko and Sanjiv Das (Chacko and

Das 2002), have extended equilibrium models to allow state variables to follow

jump-diffusion processes. An interesting application of a model with jumps in

a short-term interest rate is presented by Monika Piazzesi (Piazzesi 2005b) who

studies the Federal Reserve’s changes in the target federal funds rate.

Other affi ne equilibrium models have been set in discrete time, where the

assumed existence of a discrete-time pricing kernel allows one to find solutions

12For example, if n = 1, there are two state variable roots of the quadratic yield equation.



17.2. VALUATION MODELS FOR INTEREST RATE DERIVATIVES 513

for equilibrium bond prices that have a recursive structure. Examples of models

of this type include work by Tong-Sheng Sun (Sun 1992), David Backus and

Stanley Zin (Backus and Zin 1994), V. Cvsa and Peter Ritchken (Cvsa and

Ritchken 2001), and Qiang Dai, Anh Le, and Kenneth Singleton (Dai, Le, and

Singleton 2006). Term structure models also have been generalized to include

discrete regime shifts in the processes followed by state variables. See work by

Vasant Naik and Moon Hoe Lee (Naik and Lee 1997) and Ravi Bansal and Hao

Zhou (Bansal and Zhou 2002) for models of this type.

Let us now turn to fixed-income models whose primary purpose is not to

determine the term structure of zero-coupon bond prices as a function of state

variables. Rather, their objective is to determine the value of bond and interest

rate-related derivatives as a function of a given term structure of bond prices.

17.2 Valuation Models for Interest Rate Deriv-

atives

Models for valuing bonds and bond derivatives have different uses. The equilib-

rium models of the previous section can provide insights as to the nature of term

structure movements. They allow us to predict how factor dynamics influence

the prices of bonds of different maturities. Equilibrium models may also be

of practical use to bond traders who wish to identify bonds of particular ma-

turities that appear to be over- or underpriced based on their predicted model

valuations. Such information could suggest profitable bond trading strategies.

However, bond prices are modeled for other objectives, such as the pricing

of derivatives whose payoffs depend on the future prices of bonds or yields.

Equilibrium models may be less than satisfactory for this purpose because it is

bond derivatives, not the underlying bond prices themselves, that one wishes
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to value. In this context, one would like to use the observed market prices

for bonds as an input into the valuation formulas for derivatives, not model

the value of the underlying bonds themselves. For such a derivative-pricing

exercise, one would like the model to “fit,”or be consistent with, the observed

market prices of the underlying bonds. The models that we will now consider

are designed to have this feature.

17.2.1 Heath-Jarrow-Morton Models

The approach by David Heath, Robert Jarrow, and Andrew Morton (Heath,

Jarrow, and Morton 1992), hereafter referred to as HJM, differs from the previ-

ous equilibrium term structure models because it does not begin by specifying

a set of state variables, x, that determines the current term structure of bond

prices. Rather, their approach takes the initial term structure of bond prices as

given (observed) and then specifies how this term structure evolves in the future

in order to value derivatives whose payoffs depend on future term structures.

Because models of this type do not derive the term structure from more basic

state variables, they cannot provide insights regarding how economic funda-

mentals determine the maturity structure of zero-coupon bond prices. Instead,

HJM models are used to value fixed-income derivative securities: securities such

as bond and interest rate options whose payoffs depend on future bond prices

or yields.

An analogy to the HJM approach can be drawn from the risk-neutral val-

uation of equity options. Recall that in Chapter 10, equation (10.50), we

assumed that the risk-neutral process for the price of a stock, S (t), followed

geometric Brownian motion, making this price lognormally distributed under

the risk-neutral measure. From this assumption, and given the initial price of

the stock, S (t), the Black-Scholes formula for the value of a call option written
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on this stock was derived in equations (10.54) and (10.55). Note that we did not

attempt to determine the initial value of the stock in terms of some fundamental

state variables, say S (t,x). Rather, the initial stock price, S (t), was taken as

given and an assumption about this stock price’s volatility, namely, that it was

constant over time, was made.

The HJM approach to valuing fixed-income derivatives is similar but slightly

more complex because it takes as given the entire initial term structure of bond

prices, P (t, T ) ∀T ≥ t, not just a single asset (stock) price. It then assumes

risk-neutral processes for how the initial observed bond prices change over time

and does not attempt to derive these initial prices in terms of state variables,

say, P (t, T,x). However, the way that HJM specify the processes followed by

bond prices is somewhat indirect. They begin by specifying processes for bond

forward rates. A fundamental result of the HJM analysis is to show that, in the

absence of arbitrage, there must be a particular relationship between the drift

and volatility parameters of forward rate processes and that only an assumption

regarding the form of forward rate volatilities is needed for pricing derivatives.

Let us start by defining forward rates. Recall from Chapter 7 that a forward

contract is an agreement between two parties where the long (short) party agrees

to purchase (deliver) an underlying asset in return for paying (receiving) the

forward price. Consider a forward contract agreed to at date t, where the

contract matures at date T ≥ t and the underlying asset is a zero-coupon bond

that matures at date T + τ where τ ≥ 0. Let F (t, T, τ) be the equilibrium

forward price agreed to by the parties. Then this contract requires the long

party to pay F (t, T, τ) at date T in return for receiving a cashflow of $1 (the

zero-coupon bond’s maturity value) at date T + τ . In the absence of arbitrage,

the value of these two cashflows at date t must sum to zero, implying

−F (t, T, τ)P (t, T ) + P (t, T + τ) = 0 (17.31)
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so that the equilibrium forward price equals the ratio of the bond prices maturing

at dates T + τ and T , F (t, T, τ) = P (t, T + τ) /P (t, T ). From this forward

price a continuously compounded forward rate, f (t, T, τ), is defined as

e−f(t,T,τ)τ ≡ F (t, T, τ) =
P (t, T + τ)

P (t, T )
(17.32)

f (t, T, τ) = − (ln [P (t, T + τ) /P (t, T )]) /τ is the implicit per-period rate of

return (interest rate) that the long party earns by investing $F (t, T, T + τ) at

date T and by receiving $1 at date T + τ . Now consider the case of such a

forward contract where the underlying bond matures very shortly (e.g., the next

day or instant) after the maturity of the forward contract. This permits us to

define an instantaneous forward rate as

f (t, T ) ≡ lim
τ→0

f (t, T, τ) = lim
τ→0
− ln [P (t, T + τ)]− ln [P (t, T )]

τ
= −∂ ln [P (t, T )]

∂T

(17.33)

Equation (17.33) is a simple differential equation that can be solved to obtain

P (t, T ) = e−
∫ T
t
f(t,s)ds (17.34)

Since this bond’s continuously compounded yield to maturity is defined from

the relation P (t, T ) = e−Y (t,T )(T−t), we can write Y (t, T ) = 1
T−t

∫ T
t
f (t, s) ds.

Thus, a bond’s yield equals the average of the instantaneous forward rates for

horizons out to the bond’s maturity. In particular, the yield on an instantaneous-

maturity bond is given by r (t) = f (t, t).

Because the term structure of instantaneous forward rates, f (t, T )∀T ≥ t ,

can be determined from the term structure of bond prices, P (t, T )∀T ≥ t,

or yields, Y (t, T )∀T ≥ t, specifying the evolution of forward rates over time is

equivalent to specifying the dynamics of bond prices. HJM assume that forward
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rates for all horizons are driven by a finite-dimensional Brownian motion:

df (t, T ) = α (t, T ) dt+ σ (t, T )
′
dz (17.35)

where σ (t, T ) is an n×1 vector of volatility functions and dz is an n×1 vector of

independent Brownian motions. Note that since there are an infinite number

of instantaneous forward rates, one for each future horizon, equation (17.35)

represents infinitely many processes that are driven by the same n Brownian

motions.

Importantly, the absence of arbitrage places restrictions on α (t, T ) and

σ (t, T ). To show this, let us start by deriving the process followed by bond

prices, P (t, T ), implied by the forward rate processes. Note that since ln [P (t, T )]

= −
∫ T
t
f (t, s) ds, if we differentiate with respect to date t, we find that the

process followed by the log bond price is

d ln [P (t, T )] = f (t, t) dt−
∫ T
t
df (t, s) ds (17.36)

= r (t) dt−
∫ T
t

[
α (t, s) dt+ σ (t, s)

′
dz (t)

]
ds

Fubini’s theorem allows us to switch the order of integration:

d ln [P (t, T )] = r (t) dt−
∫ T
t
α (t, s) dsdt−

∫ T
t
σ (t, s)

′
dsdz (t) (17.37)

= r (t) dt− αI (t, T ) dt− σI (t, T )
′
dz (t)

where we have used the shorthand notation αI (t, T )≡
∫ T
t
α (t, s) ds and σI (t, T ) ≡∫ T

t
σ (t, s) ds to designate these integrals that are known functions as of date t.

Using Itô’s lemma we can derive the bond’s rate of return process from the log
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process in (17.37):

dP (t, T )

P (t, T )
=

[
r (t)− αI (t, T ) +

1

2
σI (t, T )

′
σI (t, T )

]
dt− σI (t, T )

′
dz (17.38)

Now recall from (17.5) that the absence of arbitrage requires that the bond’s

expected rate of return equal the instantaneous risk-free return plus the product

of the bond’s volatilities and the market prices of risk. This is written as

r (t)− αI (t, T ) +
1

2
σI (t, T )

′
σI (t, T ) = r (t)−Θ (t) ′σI (t, T ) (17.39)

or

αI (t, T ) =
1

2
σI (t, T )

′
σI (t, T ) + Θ (t) ′σI (t, T ) (17.40)

Equations (17.38) and (17.40) show that the bond price process depends only

on the instantaneous risk-free rate, the volatilities of the forward rates, and the

market prices of risk. This no-arbitrage condition also has implications for

the risk-neutral process followed by forward rates. If we substitute dz = dẑ−

Θ (t) dt in (17.35), we obtain

df (t, T ) =
[
α (t, T )− σ (t, T )

′
Θ (t)

]
dt+ σ (t, T )

′
dẑ

= α̂ (t, T ) dt+ σ (t, T )
′
dẑ (17.41)

where α̂ (t, T ) ≡ α (t, T ) − σ (t, T )
′
Θ (t) is the risk-neutral drift observed at

date t for the forward rate at date T . Define α̂I (t, T ) ≡
∫ T
t
α̂ (t, s) ds as the

integral over the drifts across all forward rates from date t to date T . Then
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using (17.40) we have

α̂I (t, T ) =
∫ T
t
α̂ (t, s) ds =

∫ T
t
α (t, s) ds−

∫ T
t
σ (t, s)

′
dsΘ (t)

= αI (t, T )−Θ (t) ′σI (t, T )

=
1

2
σI (t, T )

′
σI (t, T ) + Θ (t) ′σI (t, T )−Θ (t) ′σI (t, T )

=
1

2
σI (t, T )

′
σI (t, T ) (17.42)

or
∫ T
t
α̂ (t, s) ds = 1

2

(∫ T
t
σ (t, s) ds

)′ (∫ T
t
σ (t, s) ds

)
. This shows that in the

absence of arbitrage, the risk-neutral drifts of forward rates are completely de-

termined by their volatilities. Indeed, if we differentiate α̂I (t, T ) with respect

to T to recover α̂ (t, T ), we obtain

df (t, T ) = σ (t, T )
′
σI (t, T ) dt+ σ (t, T )

′
dẑ (17.43)

=
(
σ (t, T )

′ ∫ T
t
σ (t, s) ds

)
dt+ σ (t, T )

′
dẑ

Equation (17.43) has an important implication, namely, that if we want to

model the risk-neutral dynamics of forward rates in order to price fixed-income

derivatives, we need only specify the form of the forward rates’volatility func-

tions.13 One can also use (17.43) to derive the risk-neutral dynamics of the

instantaneous-maturity interest rate, r (t) = f (t, t), which is required for dis-

counting risk-neutral payoffs. Suppose dates are ordered such that 0 ≤ t ≤ T .

In integrated form, (17.43) becomes

f (t, T ) = f (0, T ) +
∫ t

0
σ (u, T )

′
σI (u, T ) du+

∫ t
0
σ (u, T )

′
dẑ (u) (17.44)

13 In general, these volatility functions may be stochastic, as they could be specified to
depend on current levels of the forward rates, that is, σ (t, T, f (t, T )).
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and for r (t) = f (t, t), this becomes

r (t) = f (0, t) +
∫ t

0
σ (u, t)

′
σI (u, t) du+

∫ t
0
σ (u, t)

′
dẑ (u) (17.45)

Differentiating with respect to t leads to14

dr (t) =
∂f (0, t)

∂t
dt+ σ (t, t)

′
σI (t, t) dt+

∫ t
0

∂σ (u, t)
′
σI (u, t)

∂t
dudt

+
∫ t

0

∂σ (u, t)
′

∂t
dẑ (u) dt+ σ (t, t)

′
dẑ

=
∂f (0, t)

∂t
dt+

∫ t
0

[
σ (u, t)

′
σ (u, t) +

∂σ (u, t)
′

∂t
σI (u, t)

]
dudt

+
∫ t

0

∂σ (u, t)
′

∂t
dẑ (u) dt+ σ (t, t)

′
dẑ (17.46)

where we have used the fact that σI (t, t) = 0 and ∂σI (u, t) /∂t = σ (u, t).

With these results, one can now value fixed-income derivatives. As an

example, define C (t) as the current date t price of a European-type contingent

claim that has a payoff at date T . This payoff is assumed to depend on the

forward rate curve (equivalently, the term structure of bond prices or yields)

at date T , which we write as C (T, f (T, T + δ)) where δ ≥ 0. The contingent

claim’s risk-neutral valuation equation is

C (t, f (t, t+ δ)) = Êt

[
e−
∫ T
t
r(s)dsC (T, f (T, T + δ)) | f (t, t+ δ) ,∀δ ≥ 0

]
(17.47)

where the expectation is conditioned on information of the current date t forward

rate curve, f (t, t+ δ) ∀δ ≥ 0. Equation (17.47) is the risk-neutral expectation

of the claim’s discounted payoff, conditional on information of all currently

observed forward rates. In this manner, the contingent claim’s formula can be

14Note that the dynamics of dr are more complicated than simply setting T = t in equation
(17.43), because both arguments of f (t, t) = r (t) are varying simultaneously. Equation

(17.46) is equivalent to dr = df (t, t) +
∂f(t,u)
∂u

|u→t dt.
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assured of fitting the current term structure of interest rates, since the forward

rate curve, f (t, t+ δ), is an input. Only for special cases regarding the type of

contingent claim and the assumed forward rate volatilities can the expectation

in (17.47) be computed analytically. In general, it can be computed by a Monte

Carlo simulation of a discrete-time analog to the continuous-time, risk-neutral

forward rate and instantaneous interest rate processes in (17.43) and (17.46).15

Valuing American-type contingent claims using the HJM approach can be

more complicated because, in general, one needs to discretize forward rates to

produce a lattice (e.g., binomial tree) and check the nodes of the lattice to see

if early exercise is optimal.16 However, HJM forward rates will not necessarily

follow Markov processes. From (17.43) and (17.46), one can see that if the

forward rate volatility functions are specified to depend on the level of forward

rates themselves, σ (t, s, f (t, s)), or the instantaneous risk-free rate, σ (t, s, r (t)),

then the evolution of f (t, T ) and r (t) depends on the entire history of forward

rates between two dates such as 0 and t. It will be impossible to express

forward rates as f (0, T,x (0)) and f (t, T,x (t)) where x (t) is a set of finite state

variables.17 Non-Markov processes lead to lattice structures where the nodes

do not recombine. This can make computation extremely time consuming

because the number of nodes grows exponentially (rather than linearly in the

case of recombining nodes) with the number of time steps. Hence, to value

American contingent claims using the HJM framework, it is highly desirable to

pick volatility structures that lead to forward rate processes that are Markov.18

15An example is presented by Kaushik Amin and Andrew Morton (Amin and Morton 1994).
They value Eurodollar futures and options assuming different one-factor (n = 1) spec-
ifications for forward rate volatilities. Their models are nested in the functional form
σ (t, T ) = [σ0 + σ1 (T − t)] e−α(T−t)f (t, T )γ .
16Recall that this method was used in Chapter 7 to value an American option.
17The reason why one may want to assume that forward rate volatilities depend on their

own level is to preclude negative forward rates, a necessary condition if currency is not to
dominate bonds in a nominal term structure model. For example, similar to the square root

model of Cox, Ingersoll, and Ross, one could specify σ (t, T ) = σ (t, T ) f (t, T )
1
2 or σ (t, T ) =

σ (t, T ) r (t)
1
2 where σ (t, T ) is a deterministic function.

18Note, also, that non-Markov short rate and forward rate processes imply that contingent
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The next section gives two examples of HJM models that are Markov in a finite

number of state variables.

Examples: Markov HJM Models

General conditions on forward rate volatilities that lead to Markov structures

are discussed in Koji Inui and Masaaki Kijima (Inui and Kijima 1998). In this

section we give two different examples of Markov HJM models. The first is

an example where forward rates, including the instantaneous-maturity interest

rate, are Markov in one state variable. In the second example, rates are Markov

in two state variables. In both examples, it is assumed that n = 1, so that

there is a single Brownian motion process driving all forward rates.

Our first example assumes forward rate volatilities are deterministic. As

shown by Andrew Carverhill (Carverhill 1994), this assumption results in HJM

models that are Markov in one state variable. Here we consider a particular

case of deterministic forward volatilities that decline exponentially with their

time horizons:

σ (t, T ) = σre
−α(T−t) (17.48)

where σr and α are positive constants. From (17.38), this implies that the rate

of return volatility of a zero-coupon bond equals

σI (t, T ) ≡
∫ T
t
σ (t, s) ds =

∫ T
t
σre
−α(s−t)ds =

σr
α

(
1− e−α(T−t)

)
(17.49)

Note that this volatility function is the same as the Vasicek model of the

term structure given in (9.44). Hence, the bond price’s risk-neutral process is

claims cannot be valued by solving an equilibrium partial differential equation, such as was
done in Chapter 9 in equation (9.40).
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dP (t, T ) /P (t, T ) = r (t) dt− σr
α

(
1− e−α(T−t)) dẑ. To value contingent claims

for this case, it remains to derive the instantaneous-maturity interest rate and

its dynamics. From (17.45) and (17.46), we have

r (t) = f (0, t) +
∫ t

0

σ2
r

α

(
e−α(t−u) − e−2α(t−u)

)
du+

∫ t
0
σre
−α(t−u)dẑ (u) (17.50)

dr =
∂f (0, t)

∂t
dt+

∫ t
0

[
σ2
re
−2α(t−u) − σ2

r

(
e−α(t−u) − e−2α(t−u)

)]
dudt

−
∫ t

0
ασre

−α(t−u)dẑ (u) dt+ σrdẑ (17.51)

Substituting (17.50) into (17.51) and simplifying leads to

dr =
∂f (0, t)

∂t
dt+

∫ t
0
σ2
re
−2α(t−u)dudt+ α [f (0, t)− r (t)] dt+ σrdẑ

= α

[
1

α

∂f (0, t)

∂t
+ f (0, t) +

σ2
r

2α2

(
1− e−2αt

)
− r (t)

]
dt+ σrdẑ

= α [r (t)− r (t)] dt+ σrdẑ (17.52)

where r (t) ≡ 1
α∂f (0, t) /∂t+ f (0, t) + σ2

r

(
1− e−2αt

)
/
(
2α2

)
is the risk-neutral

central tendency of the short-rate process that is a deterministic function of time.

The process in (17.52) is Markov in that the only stochastic variable affecting

its future distribution is the current level of r (t). However, it differs from the

standard Vasicek model, which assumes that the risk-neutral process for r (t)

has a long-run mean that is constant.19 By making the central tendency, r (t),

a particular deterministic function of the currently observed forward rate curve,

f (0, t) ∀t ≥ 0, the model’s implied date 0 price of a zero-coupon bond, P (0, T ),

coincides exactly with observed prices.20 This model was proposed by John

19Recall from equation (10.66) that the unconditional mean of the risk-neutral interest rate
is r+ qσr/α, where r is the mean of the physical process and q is the market price of interest
rate risk.
20 It is left as an exercise to verify that when r (t) ≡ 1

α
∂f (0, t) /∂t + f (0, t) +
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Hull and Alan White ((Hull and White 1990); (Hull and White 1993)) and HJM

(Heath, Jarrow, and Morton 1992) and is referred to as the “extended Vasicek”

model.21

Let us illustrate this Extended Vasicek model by valuing a European option

maturing at date T , where the underlying asset is a zero-coupon bond maturing

at date T +τ . Since, as with the standard Vasicek model, the extended Vasicek

model has bond return volatilities as a deterministic function of time, the ex-

pectation in (17.47) for the case of a European option has an analytic solution.

Alternatively, the results of Merton (Merton 1973b) given in equations (9.58) to

(9.60) on the pricing of options when interest rates are random can be applied

to derive the solution. However, instead of Chapter 9’s assumption of the

underlying asset being an equity that follows geometric Brownian motion, the

underlying asset is a bond that matures at date T + τ . For a call option with

exercise price X, the boundary condition is c (T ) = max [P (T, T + τ)−X, 0].

This leads to the solution

c (t) = P (t, T + τ) N(d1) − P (t, T )XN(d2) (17.53)

= e−
∫ T+τ

t
f(t,s)dsN (d1)− e−

∫ T
t
f(t,s)dsXN(d2)

where d1 =
[
ln [P (t, T + τ) / (P (t, T )X)] + 1

2v (t, T )
2
]
/v (t, T ), d2 = d1 −

σ2
r

(
1− e−2αt

)
/
(
2α2

)
, then P (0, T ) = Ê

[
exp

(
−
∫ T
0 r (s) ds

)]
= exp

(
−
∫ T
0 f (0, s) ds

)
.

21Hull and White show that, besides r (t), the parameters α (t) and σr (t) also can be
extended to be deterministic functions of time. With these extensions, r (t) remains normally
distributed and analytic solutions to options on discount bonds can be obtained. Making
α (t) and σr (t) time varying allows one to fit other aspects of the term structure, such as
observed volatilities of forward rates.



17.2. VALUATION MODELS FOR INTEREST RATE DERIVATIVES 525

v (t, T ), and where22

v (t, T )
2

=

∫ T

t

[
σ2
I (t, u+ τ) + σ2

I (t, u)− 2ρσI (t, u+ τ)σI (t, u)
]
du

=
σ2
r

2α3

(
1− e−2α(T−t)

) (
1− e−στ

)2
(17.54)

This solution illustrates a general principle of the HJM approach, namely, that

formulas can be derived whose inputs match the initial term structure of bond

prices (P (t, T ) and P (t, T + τ)) or, equivalently, the initial forward rate curve

(f (t, s)∀s ≥ t).

Our second example of a Markov HJM model is due to Peter Ritchken and

L. Sankarasubramanian (Ritchken and Sankarasubramanian 1995), hereafter

referred to as RS. They give general conditions on forward rate volatilities

that result in term structure dynamics being Markov in two state variables. A

particular example that satisfies these conditions is their example where forward

rate volatilities take the form

σ (t, T ) = σrr (t)
γ
e−α(T−t) (17.55)

where σr and α are positive constants. Thus, (17.55) specifies that the volatility

of the short rate (when T = t) equals σrr (t)
γ . When γ = 0, we have our

first example’s extended Vasicek case of deterministic forward rates. However,

empirical evidence indicates that interest rate volatility increases with the level

of the short rate, so that it is desirable to obtain a Markov model with γ > 0.

Similar to the derivation for r (t) given for the extended Vasicek model, RS show

that in this case the risk-neutral process for the instantaneous-maturity interest

22Note that when applying Merton’s derivation to the case of the underlying asset being a
bond, then ρ, the return correlation between bonds maturing at dates T and T + τ , equals 1.
This is because there is a single Brownian motion determining the stochastic component of
returns.
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rate satisfies

dr (t) =

(
α [f (0, t)− r (t)] + φ (t) +

∂f (0, t)

∂t

)
dt+ σrr (t)

γ
dẑ (17.56)

where

φ (t) =

∫ t

0

σ2 (s, t) ds

= σ2
r

∫ t

0

r (s)
2γ
e−2α(t−s)ds (17.57)

Differentiating (17.57) with respect to t, one obtains the dynamics of φ (t) to be

dφ (t) =
(
σ2
rr (t)

2γ − 2αφ (t)
)
dt (17.58)

The variable φ (t) is an “integrated variance”factor that evolves stochastically

when γ 6= 0.23 It, along with the short rate, r (t), are two state variables that

determine the evolution of r (t). In turn, this determines the bonds’risk-neutral

processes. Recall that since a bond’s rate of return volatility equals σI (t, T ) ≡∫ T
t
σ (t, s) ds =

∫ T
t
σrr (t)

γ
e−α(s−t)ds = σrr(t)

γ

α

(
1− e−α(T−t)), its risk-neutral

price process equals

dP (t, T ) /P (t, T ) = r (t) dt− σrr (t)
γ

α

(
1− e−α(T−t)

)
dẑ (17.59)

It is noteworthy that even when γ = 1
2 , the model differs from the CIR

equilibrium model. Even though in both models the short rate’s volatility,

σr
√
r (t), is the same, the RS model’s requirement that it fit the observed term

23Note that when γ = 0, one obtains φ (t) =
σ2r
2α

(
1− e−2αt

)
, so that φ (t) is deterministic

and the short rate process in (17.56) equals that of the extended Vasicek model in (17.52).
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structure introduces a second stochastic state variable, φ (t), into the drift of

the short rate process in (17.56).

In general, valuing fixed-income derivatives using the RS model does not

lead to closed-form solutions. However, RS (Ritchken and Sankarasubramanian

1995) show that the risk-neutral processes for r (t) and φ (t) can be discretized

and Monte Carlo simulations performed to value contingent claims based on

(17.47).

There are a number of other discrete-time models that can numerically value

fixed-income derivatives based on calculations using binomial trees or lattices.

These models can be viewed as discrete-time implementations of the continuous-

time HJM approach in that they are designed to fit the initial term structure of

bond prices and, possibly, bond volatilities. Thomas Ho and Sang Bin Lee (Ho

and Lee 1986) first introduced the concept of pricing fixed-income derivatives

by taking the initial term structure of bond prices as given and then mak-

ing assumptions regarding the risk-neutral distribution of future interest rates.

Their model is the discrete-time counterpart of the extended Vasicek model but

with the mean reversion parameter, α, set to zero.24 This binomial approach

was modified for different risk-neutral interest rate dynamics by Fischer Black,

Emanuel Derman, and William Toy (Black, Derman, and Toy 1990) and Fischer

Black and Piotr Karasinski (Black and Karasinski 1991). These discrete-time

“no-arbitrage”models are fixed-income counterparts to the binomial model of

Chapter 7 that was used to price equity derivatives.

17.2.2 Market Models

24Thus, with zero mean reversion, an unattractive feature of this model is that the short
rate is expected to explode over time. The Ho-Lee model is a mechanical way of calibrating a
lattice that is consistent with an initial term structure of bond prices. The HJM approach can
be viewed as a shortcut to accomplishing this because the extended Vasicek model provides
an analytic solution that embeds the Ho-Lee assumptions.
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As shown in the previous section, HJM models begin with a particular spec-

ification for instantaneous-maturity, continuously compounded forward rates,

and then derivative values are calculated based on these initial forward rates.

However, instantaneous-maturity forward rates are not directly observable, and

in many applications they must be approximated from data on bond yields or

discrete-maturity forward or futures rates that are unavailable at every matu-

rity. A class of models that is a variation on the HJM approach can sometimes

avoid this approximation error and may lead to more simple, analytic solutions

for particular types of derivatives. These models are known as “market models”

and are designed to price derivatives whose payoffs are a function of a discrete

maturity, rather than instantaneous-maturity, forward interest rate. Examples

of such derivatives include interest rate caps and floors and swaptions. Let us

illustrate the market model approach by way of these examples.

Example: An Interest Rate Cap

Consider valuing a European option written on a discrete forward rate, such as

one based on the London Interbank Offer Rate (LIBOR). Define L (t, T, τ) as

the date t annualized, τ -period compounded, forward interest rate for borrowing

or lending over the period from future date T to T+τ .25 In terms of current date

t discount bond prices (P (t, t+ δ)), forward price (F (t, T, τ)), and continuously

compounded forward rate (f (t, T, τ)), this discrete forward rate is defined by

the relation

P (t, T + τ)

P (t, T )
= F (t, T, τ) = e−f(t,T,τ)τ =

1

1 + τL (t, T, τ)
(17.60)

25The convention for LIBOR is to set the compounding interval equal to the underlying
instrument’s maturity. For example, if τ = 1

4
years, then three-month LIBOR is compounded

quarterly If τ = 1
2
years, then six-month LIBOR is compounded semiannually.
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Note that when T = t, P (t, t+ τ) = 1/ [1 + τL (t, t, τ)] defines L (t, t, τ) as the

current “spot”τ -period LIBOR.26 An example of an option written on LIBOR

is a caplet that matures at date T +τ and is based on the realized spot rate

L (T, T, τ). Assuming this caplet has an exercise cap rate X, its date T + τ

payoff is

c (T + τ) = τ max [L (T, T, τ)−X, 0] (17.61)

that is, the option payoff at date T + τ depends on the τ -period spot LIBOR

at date T .27 Because uncertainty regarding the LIBOR rate is resolved at date

T , which is τ period’s prior to the caplet’s settlement (payment) date, we can

also write

c (T ) = P (T, T + τ) max [τL (T, T, τ)− τX, 0] (17.62)

= P (T, T + τ) max

[
1

P (T, T + τ)
− 1− τX, 0

]
= max [1− (1 + τX)P (T, T + τ) , 0]

= max

[
1− 1 + τX

1 + τL (T, T, τ)
, 0

]

which illustrates that a caplet maturing at date T + τ is equivalent to a put

option that matures at date T , has an exercise price of 1, and is written on a

zero-coupon bond that has a payoff of 1 + τX at its maturity date of T + τ .

Similarly, a floorlet, whose date T + τ payoff equals τ max [X − L (T, T, τ) , 0],

can be shown to be equivalent to a call option on a zero-coupon bond.28

To value a caplet using a market model approach, let us first analyze the

26This modeling assumes that LIBOR is the yield on a default-free discount bond. However,
LIBOR is not a fully default-free interest rate, such as a Treasury security rate. It represents
the borrowing rate of a large, generally high-credit-quality, bank. Typically, the relatively
small amount of default risk is ignored when applying market models to derivatives based on
LIBOR.
27Caplets are based on a notional principal amount, which here is assumed to be $1. The

value of a caplet having a notional principal of $N is simply N times the value of a caplet
with a notional principal of $1, that is, its payoff is τN max [L (T, T, τ)−X, 0].
28Therefore, the HJM-extended Vasicek solution in (17.53) to (17.54) is one method for

valuing a floorlet. A straightforward modification of this formula could also value a caplet.
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dynamics of L (t, T, τ). Rearranging (17.60) gives

τL (t, T, τ) =
P (t, T )

P (t, T + τ)
− 1 (17.63)

We can derive the stochastic process followed by this forward rate in terms of

the bond prices’ risk-neutral processes. Note that from (17.38), along with

dz = dẑ−Θ (t) dt, we have dP (t, T ) /P (t, T ) = r (t) dt−σI (t, T )
′
dẑ. Apply-

ing Itô’s lemma to (17.63), we obtain

dL (t, T, τ)

L (t, T, τ)
=

(
σI (t, T + τ)

′
[σI (t, T + τ)− σI (t, T )]

)
dt (17.64)

+ [σI (t, T + τ)− σI (t, T )]
′
dẑ

In principle, now we could value a contingent claim written on L (t, T, τ) by

calculating the claim’s discounted expected terminal payoff assuming L (t, T, τ)

follows the process in (17.64).29 However, as will become clear, there is an

alternative probability measure to the one generated by dẑ that can be used to

calculate a contingent claim’s expected payoff, and this alternative measure is

analytically more convenient for this particular forward rate application.

To see this, consider the new transformation dz̃ = dẑ + σI (t, T + τ) dt =

dz+ [Θ (t) + σI (t, T + τ)] dt. Substituting into (17.64) results in

dL (t, T, τ)

L (t, T, τ)
= [σI (t, T + τ)− σI (t, T )]

′
dz̃ (17.65)

so that under the probability measure generated by dz̃, the process followed

by L (t, T, τ) is a martingale. This probability measure is referred to as the

forward rate measure at date T + τ . Note that since L (t, T, τ) is linear in the

29Specifically, if c (t, L (t, T, τ)) is the contingent claim’s value, it could be calculated as

Êt

[
e−
∫ T
t r(s)dsc (T, L (T, T, τ))

]
where r (t) and L (t, T, τ) are assumed to follow risk-neutral

processes.
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bond price P (t, T ) deflated by P (t, T + τ), the forward rate measure at date

T + τ works by deflating all security prices by the price of the discount bond

that matures at date T +τ . This contrasts with the risk-neutral measure where

security prices are deflated by the value of the money market account, which

follows the process dB (t) = r (t)B (t) dt.

Not only does L (t, T, τ) follow a martingale under the forward measure, but

so does the value of all other securities. To see this, let the date t price of a

contingent claim be given by c (t). In the absence of arbitrage, its price process

is of the form
dc

c
= [r (t) + Θ (t) ′σc (t)] dt+ σc (t)

′
dz (17.66)

Now define the deflated contingent claim’s price as C (t) = c (t) /P (t, T + τ).

Applying Itô’s lemma gives

dC

C
= [Θ (t) +σI (t, T + τ)] ′ [σc (t) + σI (t, T + τ)] dt (17.67)

+ [σc (t) + σI (t, T + τ)] ′dz

and making the forward measure transformation dz̃ = dz + [Θ (t) + σI (t, T + τ)] dt,

(17.67) becomes the martingale process

dC

C
= [σc (t) + σI (t, T + τ)] ′dz̃ (17.68)

so that C (t) = Ẽt [C (t+ δ)] ∀δ ≥ 0, where Ẽt [·] is the date t expectation under

the forward measure. Now, to show why this transformation can be convenient,

suppose that this contingent claim is the caplet described earlier. This deflated
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caplet’s value is given by

C (t) = Ẽt [C (T + τ)] (17.69)

= Ẽt

[
τ max [L (T, T, τ)−X, 0]

P (T + τ , T + τ)

]

Noting that C (t) = c (t) /P (t, T + τ) and realizing that P (T + τ , T + τ) = 1 ,

we can rewrite this as

c (t) = P (t, T + τ) Ẽt [τ max [L (T, T, τ)−X, 0]] (17.70)

A common practice is to assume that L (T, T, τ) is lognormally distributed

under the date T+τ forward measure.30 This means that [σI (t, T + τ)− σI (t, T )]

in (17.65) must be a vector of nonstochastic functions of time that can be cal-

ibrated to match observed bond or forward rate volatilities.31 Noting that

L (t, T, τ) also has a zero drift leads to a similar formula first proposed by Fis-

cher Black (Black 1976) for valuing options on commodity futures:

c (t) = τP (t, T + τ) [L (t, T, τ)N (d1)−XN (d2)] (17.71)

where d1 =
[
ln (L (t, T, τ) /X) + 1

2v (t, T )
2
]
/v (t, T ), d2 = d1 − v (t, T ), and

v (t, T )
2

=
∫ T
t
|σI (s, T + τ)− σI (s, T )|2 ds (17.72)

Equation (17.71) is similar to equation (10.60) derived in Chapter 10 for the case

30Assuming a lognormal distribution for L (t, T, τ) is attractive because it prevents this
discrete forward rate from becoming negative, thereby also restricting yields on discount bonds
to be nonnegative. Note that if instantaneous-maturity forward rates are assumed to be
lognormally distributed, HJM show that they will be expected to become infinite in finite
time. This is inconsistent with arbitrage-free bond prices. Fortunately, such an explosion of
rates does not occur when forward rates are discrete (Brace, Gatarek, and Musiela 1997).
31Note that since σI (t, t+ δ) is an integral of instantaneous forward rate volatilities, the

lognormality of σI (t, t+ τ)−σI (t, T ) puts restrictions on instantaneous forward rates under
an HJM modeling approach. However, we need not focus on this issue for pricing applications
involving a discrete forward rate.
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of a call option on a forward or futures price where the underlying is lognormally

distributed and interest rates are nonstochastic.

An interest rate cap is a portfolio of caplets written on the same τ -period

LIBOR but maturing at different dates T = T1, T2, ..., Tn, where typically

Tj+1 = Tj + τ . Standard practice is to value each individual caplet in the

portfolio in the manner we have described, where the caplet maturing at date

Tj is priced using the date Tj + τ forward measure. Often, caps are purchased

by issuers of floating-rate bonds whose bond payments coincide with the caplet

maturity dates. Doing so insures the bond issuer against having to make a

floating coupon rate greater than X (plus a credit spread). Since a floating-

rate bond’s coupon rate payable at date T + τ is most commonly tied to the

τ -period LIBOR at date T , caplet payoffs follow this same structure. Analogous

to a cap, an interest rate floor is a portfolio of floorlets and can be valued using

the same technique described in this section.

Example: A Swaption

Frequently, a market model approach is applied to value another common inter-

est rate derivative, a swaption. A swaption is an option to become a party in

an interest rate swap at a given future maturity date and at a prespecified swap

rate. Let us, then, define the interest rate swap underlying this swaption. A

standard “plain vanilla”swap is an agreement between two parties to exchange

fixed interest rate coupon payments for floating interest rate coupon payments

at dates T1, T2, ...,Tn+1, where Tj+1 = Tj + τ and τ is the maturity of the

LIBOR of the floating-rate coupon payments. Thus, if K is the swap’s fixed

annualized coupon rate, then at date Tj+1 the fixed-rate payer’s net payment

is τ [K − L (Tj , Tj , τ)], whereas that of the floating-rate payer is exactly the
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opposite.32

Note that the swap’s series of floating-rate payments plus an additional $1

at date Tn+1 can be replicated by starting with $1 at time T0 = T1 − τ and

repeatedly investing this $1 in τ -maturity LIBOR deposits.33 These are the

same cashflows that one would obtain by investing $1 in a floating-rate bond at

date T0. Similarly, the swap’s series of fixed-rate payments plus an additional

$1 at date Tn+1 can be replicated by buying a fixed-coupon bond that pays

coupons of τK at each swap date and pays a principal of $1 at its maturity

date of Tn+1. Based on this insight, one can see that the value of a swap to the

floating-rate payer is the difference between a fixed-coupon bond having coupon

rate K, and a floating-coupon bond having coupons tied to τ -period LIBOR.

Thus, if t ≤ T0 = T1 − τ , then the date t value of the swap to the floating-rate

payer is34

τK
n+1∑
j=1

P (t, Tj) + P (t, Tn+1)− P (t, T0) (17.73)

When a standard swap agreement is initiated at time T0, the fixed rate K is

set such that the value of the swap in (17.73) is zero. This concept of setting

K to make the agreement fair (similar to forward contracts) can be extended to

dates prior to T0. One can define s0,n (t) as the forward swap rate that makes

the date t value of the swap (starting at date T0 and making n subsequent

exchanges) equal to zero. Setting K = s0,n (t) and equating (17.73) to zero,

32Recall that L (Tj , Tj , τ) is the spot τ -period LIBOR at date Tj . Also, as discussed in
the preceding footnote, this exchange is based on a notional principal of $1. For a notional
principal of $N , all payments are multiplied by N .
33Thus, $1 invested at time T0 produces a return of 1 + τL (T0, T0, τ) at T1. Keeping the

cashflow of τL (T0, T0, τ) and reinvesting the $1 will then produce a return of 1+τL (T1, T1, τ)
at T2. Keeping the cashflow of τL (T1, T1, τ) and reinvesting the $1 will then produce a
return of 1 + τL (T2, T2, τ) at T3. This process is repeated until at time Tn+1 a final return
of 1 + τL (Tn, Tn, τ) is obtained.
34Notice that P (t, T0) is the date t value of the floating-rate bond while the remaining

terms are the value of the fixed-rate bond.
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one obtains

s0,n (t) =
P (t, T0)− P (t, Tn+1)

τ
∑n+1
j=1 P (t, Tj)

(17.74)

=
P (t, T0)− P (t, Tn+1)

B1,n (t)

where B1,n (t) ≡ τ
∑n+1
j=1 P (t, Tj) is a portfolio of zero-coupon bonds that each

pay τ at the times of the swap’s exchanges.

Now a standard swaption is an option to become either a fixed-rate payer or

floating-rate payer at a fixed swap rate X at a specified future date. Thus, if

the maturity of the swaption is date T0, at which time the holder of the swaption

has the right but not the obligation, to become a fixed-rate payer (floating-rate

receiver), this option’s payoff equals35

c (T0) = max [B1,n (T0) [s0,n (T0)−X] , 0] (17.75)

= max [1− P (T0, Tn+1)−B1,n (T0)X, 0]

Note from the first line of (17.75) that when the option is in the money, then

B1,n (T0) [s0,n (T0)−X] is the date T0 value of the fixed-rate payer’s savings

from having the swaption relative to entering into a swap at the fair spot rate

s0,n (T0). In the second line of (17.75), we have substituted from (17.74)

s0,n (T0)B1,n (T0) = P (T0, T0) − P (T0, Tn+1) = 1 − P (T0, Tn+1). This il-

lustrates that a swaption is equivalent to an option on a coupon bond with

coupon rate X and an exercise price of 1.

To value this swaption at date t ≤ T0, a convenient approach is to recog-

nize from (17.75) that the swaption’s payoff is proportional to B1,n (T0) ≡

τ
∑n+1
j=1 P (T0, Tj). This suggests that B1,n (t) is a convenient deflator for valu-

35The payoff of an option to be a floating-rate payer (fixed-rate receiver) is
max [B1,n (T0) [X − s0,n (T0)] , 0].
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ing the swap. By normalizing all security prices by B1,n (t), we will value the

swaption using the so-called “forward swap measure.”

Similar to valuation under the risk-neutral or forward measure of the pre-

vious section, let us define C (t) = c (t) /B1,n (t). Also define dz = dz+[
Θ (t) + σB1,n

(t)
]
dt where σB1,n

(t) is the date t vector of instantaneous volatil-

ities of the zero-coupon bond portfolio’s value, B1,n (t). Similar to the derivation

in equations (17.66) to (17.68), we have

dC

C
=
[
σc (t) + σB1,n (t, T + τ)

] ′dz (17.76)

so that all deflated asset prices under the forward swap measure follow martin-

gale processes. Thus,

C (t) = Et [C (T0)] (17.77)

= Et

[
max [B1,n (T0) [s0,n (T0)−X] , 0]

B1,n (T0)

]
= Et [max [s0,n (T0)−X, 0]]

Rewritten in terms of the undeflated swaption’s current value, c (t) = C (t)B1,n (t),

(17.77) becomes

c (t) = B1,n (t)Et [max [s0,n (T0)−X, 0]] (17.78)

so that the expected payoff under the forward swap measure is discounted by

the current value of a portfolio of zero-coupon bonds that mature at the times

of the swap’s exchanges.

Importantly, note that s0,n (t) = [P (t, T0)− P (t, Tn+1)] /B1,n (t) is the ratio

of the difference between two security prices deflated by B1,n (t). In the absence

of arbitrage, it must also follow a martingale process under the forward swap
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measure. A convenient and commonly made assumption is that this forward

swap rate is lognormally distributed under the forward swap measure:

ds0,n (t)

s0,n (t)
= σs0,n (t) ′dz (17.79)

so that σS0,n (t) is a vector of deterministic functions of time that can be cali-

brated to match observed forward swap volatilities or zero-coupon bond volatil-

ities.36 This assumption results in (17.78) taking a Black-Scholes-type form:

c (t) = B1,n (t) [s0,n (t)N (d1)−XN (d2)] (17.80)

where d1 =
[
ln (s0,n (t) /X) + 1

2v (t, T0)
2
]
/v (t, T0), d2 = d1 − v (t, T0), and

v2 (t, T0) =
∫ T0
t
σs0,n (u) ′σs0,n (u) du (17.81)

17.2.3 Random Field Models

The term structure models that we have studied thus far have specified a finite

number of Brownian motion processes as the source of uncertainty determining

the evolution of bond prices or forward rates. For example, the bond price

processes in equilibrium models (see equation (17.2)) and HJM models (see

equation (17.38)) were driven by an n×1 vector of Brownian motions, dz. One

implication of this is that a Black-Scholes hedge portfolio of n different maturity

bonds can be used to perfectly replicate the risk of any other maturity bond. As

shown in Chapter 10, in the absence of arbitrage, the fact that any bond’s risk

can be hedged with other bonds places restrictions on bonds’expected excess

rates of return and results in a unique vector of market prices of risk, Θ (t),

36Applying Itô’s lemma to (17.74) allows one to derive the volatility of s0,n (t) in terms of
zero-coupon bond volatilities.
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associated with dz. This implies a bond price process of the form

dP (t, T ) /P (t, T ) = [r (t) + Θ (t) ′σp (t, T )] dt+ σp (t, T )
′
dz (17.82)

Moreover, the Black-Scholes hedge, by making the market dynamically com-

plete and by identifying a unique Θ (t) associated with dz, allows us to perform

risk-neutral valuation by the transformation dẑ = dz + Θ (t) dt or valuation

using the pricing kernel dM/M = −r (t) dt−Θ (t)
′
dz.

However, the elegance of these models comes with an empirical downside.

The fact that all bond prices depend on the same n×1 vector dz places restric-

tions on the covariance of bonds’rates of return. For example, when n = 1,

the rates of return on all bonds are instantaneously perfectly correlated. While

in these models the correlation can be made less perfect by increasing n, doing

so introduces more parameters that require estimation.

A related empirical implication of (17.82) or (17.35) is that it restricts the

possible future term structures of bond prices or forward rates. In other words,

starting from the current date t set of bond prices P (t, T ) ∀T > t, an arbitrary

future term structure, P (t+ dt, T ) ∀T > t + dt, cannot always be achieved by

any realization of dz. This is because a given future term structure has an

infinite number of bond prices (each of a different maturity), but the finiteness

of dz allows matching this future term structure at only a finite number of

maturity horizons.37 Hence, models based on a finite dz are almost certainly

inconsistent with future observed bond prices and forward rates. Because of

this, empiricists must assume that data on bond prices (or yields) are observed

with “noise” or that, in the case of HJM-type models, parameters (that the

model assumes to be constant) must be recalibrated at each observation date

37For example, consider n = 1. In this case, all bond prices must either rise or fall with a
given realization of dz. This model would not permit a situation where short-maturity bond
prices fell but long-maturity bond prices rose. The model could produce a realization of dz
that matched long-maturity bond prices or short-maturity bond prices, but not both.
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to match the new term structure of forward rates.

Random field models are an attempt to avoid these empirical deficiencies.

Research in this area includes that of David Kennedy (Kennedy 1994); (Kennedy

1997), Robert Goldstein (Goldstein 2000), Pedro Santa-Clara and Didier Sor-

nette (Santa-Clara and Sornette 2001), and Robert Kimmel (Kimmel 2004).

These models specify that each zero-coupon bond price, P (t, T ), or each in-

stantaneous forward rate, f (t, T ), is driven by a Brownian motion process that

is unique to the bond’s or rate’s maturity, T . For example, a model of this type

might assume that a bond’s risk-neutral process satisfies

dP (t, T ) /P (t, T ) = r (t) dt+ σp (t, T ) dẑT ∀T > t (17.83)

where dẑT (t) is a single Brownian motion process (under the risk-neutral mea-

sure) that is unique to the bond that matures at date T .38 The set of Brownian

motions for all zero-coupon bonds { ẑT (t) }T>t comprises a Brownian “field,”

or “sheet.” This continuum of Brownian motions has two dimensions: calendar

time, t, and time to maturity, T . The elements affecting different bonds are

linked by an assumed correlation structure:

dẑT1 (t) dẑT2 (t) = ρ (t, T1,T2) dt (17.84)

where ρ (t, T1,T2) > 0 is specified to be a particular continuous, differentiable

function with ρ (t, T, T ) = 1 and ∂ρ(t,T1,T2)
∂T1

|T1=T2 = 0. For example, one simple

specification involving only a single parameter is ρ (t, T1,T2) = e−%|T1−T2|, where

% is a positive constant.

One can also model the physical process for bond prices corresponding to

38An alternative way of specifying a random field model is to assume that the
risk-neutral processes for instantaneous forward rates are of the form df (t, T ) =[
σ (t, T )

∫ T
t σ (t, s) c (t, T, s) ds

]
dt+σ (t, T ) dzT , where dzT1dzT2 = c (t, T1, T2) dt. This spec-

ification extends the HJM equation (17.43) to a random field driving forward rates.
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(17.83). If θT (t) is the market price of risk associated with dẑT (t), then making

the transformation dzT = dẑT + θT (t) dt, one obtains

dP (t, T ) /P (t, T ) = [r (t) + θT (t)σp (t, T )] dt+σp (t, T ) dzT ∀T > t (17.85)

with dzT (t), T > t satisfying the same correlation function as in (17.84). Anal-

ogous to the finite-factor pricing kernel process in (17.8), a pricing kernel for

this random field model would be

dM/M = −r (t) dt−
∫∞
t

[θT (t) dzT (t)] dT (17.86)

so that an integral of the products of market prices of risk and Brownian motions

replaces the usual sum of these products that occur for the finite factor case.39

The benefit of a model like (17.83) and (17.84) is that a realization of the

Brownian field can generate any future term structure of bond prices or for-

ward rates and, hence, be consistent with empirical observation and not require

model recalibration. Moreover, with only a few additional parameters, ran-

dom field models can provide a flexible covariance structure among different

maturity bonds. Specifically, unlike finite-dimensional equilibrium models or

HJM models, the covariance matrix of different maturity bond returns or for-

ward rates will always be nonsingular no matter how many bonds are included.

This could be important when valuing particular fixed-income derivatives where

the underlying is a portfolio of zero-coupon bonds, and the correlation between

these bonds affects the overall portfolio volatility.

39Note, however, that a random field model is not the same as a standard finite factor model
extended to an infinite number of factors. As shown in (17.85), a random field model has
a single Brownian motion driving each bond price or forward rate. A factor model, such as
(17.2) or (17.38), extended to infinite factors would have the same infinite set of Brownian
motions driving each bond price.
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However, this rich covariance structure requires stronger theoretical assump-

tions for valuing derivatives compared to finite-dimensional diffusion models. A

given bond’s return can no longer be perfectly replicated by a portfolio of other

bonds, and thus a Black-Scholes hedging argument cannot be used to identify

a unique market price of risk associated with each dzT (t).40 The market for

fixed-income securities is no longer dynamically complete. Hence, one must as-

sume, perhaps due to an underlying preference-based general equilibrium model,

that there exists particular θT (t) associated with each dzT (t) or, equivalently,

that a risk-neutral pricing exists.

Random field models can be parameterized by assuming particular func-

tions for bond price or forward rate volatilities. For example, Pierre Collin-

Dufresne and Robert Goldstein (Collin-Dufresne and Goldstein 2003) propose a

stochastic volatility model where, in equation (17.83), σp (t, T ) = σ (t, T )
√

Σ (t),

where σ (t, T ) is a deterministic function and where Σ (t) is a volatility factor,

common to all bonds, that follows the square root process

dΣ (t) = κ
(
Σ− Σ (t)

)
dt+ ϑ

√
Σ (t)dẑΣ (17.87)

where dẑΣ is a Brownian motion (under the risk-neutral measure) that is as-

sumed to be independent of the Brownian field {dẑT } ∀T > t. Based on

this parameterization, which is similar to a one-factor affi ne model, they derive

solutions for various interest rate derivatives.41

40Robert Goldstein (Goldstein 2000) characterizes random field models of the term structure
as being analogous to the APT model (Ross 1976). As discussed in Chapter 3, the APT
assumes that a given asset’s return depends on the risk from a finite number of factors along
with the asset’s own idiosyncratic risk. Thus, the asset is imperfectly correlated with any
portfolio containing a finite number of other assets. Similarly, in a random field model, a
given bond’s return is imperfectly correlated with any portfolio containing a finite number of
other bonds. Taking the analogy a step further, perhaps market prices of risk in a random
field model can be characterized using the notion of asymptotic arbitrage, rather than exact
arbitrage.
41Robert Kimmel (Kimmel 2004) also derives models with stochastic volatility driven by

multiple factors.
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If, similar to David Kennedy (Kennedy 1994), one makes the more simple

assumption that σp (t, T ) in (17.83) and ρ (t, T1,T2) in (17.84) are deterministic

functions, then options on bonds, such as caplets and floorlets, have a Black-

Scholes-type valuation formula. For example, suppose as in the HJM-extended

Vasicek case of (17.53) to (17.54) that we value a European call option that

matures at date T , is written on a zero-coupon bond that matures at date

T + τ , and has an exercise price of X. Similar to (17.70), we can value this

option using the date T forward rate measure:

c (t) = P (t, T ) Ẽt [max [p (T, T + τ)−X, 0]] (17.88)

where p (t, T + τ) ≡ P (t, T + τ) /P (t, T ) is the deflated price of the bond that

matures at date T + τ . Applying Itô’s lemma to the risk-neutral process for

bond prices in (17.83), we obtain

dp (t, T + τ)

p (t, T + τ)
= σp (t, T ) [σp (t, T )− ρ (t, T, T + τ)σp (t, T + τ)] dt

+σp (t, T + τ) dẑT+τ − σp (t, T ) dẑT (17.89)

We can rewrite dẑT+τ = ρ (t, T, T + τ) dẑT +

√
1− ρ (t, T, T + τ)

2
dẑU,T , where

dẑU,T is a Brownian motion uncorrelated with dẑT , so that the stochastic

component in (17.89) can be written as σp (t, T + τ)

√
1− ρ (t, T, T + τ)

2
dẑU,T

+ [σp (t, T + τ) ρ (t, T, T + τ)− σp (t, T )] dẑT .42 Then making the transforma-

tion to the date T forward measure, dz̃T = dẑT + σp (t, T ), the process for

42This rewriting puts the risk-neutral process for p (t, T + τ) in the form of our prior analysis
in which the vector of Brownian motions, dẑ, was assumed to have independent elements.
This allows us to make the transformation to the forward measure in the same manner as was
done earlier.
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p (t, T + τ) becomes

dp (t, T + τ)

p (t, T + τ)
= σp (t, T + τ)

√
1− ρ (t, T, T + τ)

2
dẑU,T

+ [σp (t, T + τ) ρ (t, T, T + τ)− σp (t, T )] dz̃T

= σ (t, T, τ) dz̃ (17.90)

where

σ (t, T, τ)
2 ≡ σp (t, T + τ)

2
+ σp (t, T )

2 − 2ρ (t, T, T + τ)σp (t, T + τ)σp (t, T )

(17.91)

Thus, p (t, T + τ) is lognormally distributed under the forward rate measure, so

that (17.88) has the Black-Scholes-Merton-type solution

c (t) = P (t, T ) [p (t, T + τ)N (d1)−XN (d2)] (17.92)

= P (t, T + τ)N (d1)− P (t, T )N (d2)

where d1 =
[
ln (p (t, T + τ) /X) + 1

2v (t, T )
2
]
/v (t, T ), d2 = d1 − v (t, T ), and

v (t, T )
2

=
∫ T
t
σ (u, T, τ)

2
du (17.93)

and σ (u, T, τ) is defined in (17.91). While this formula is similar to the Vasicek-

based ones in (9.58) and (17.53), the volatility function in (17.91) may permit

a relatively more flexible form for matching observed data.

17.3 Summary

This chapter has outlined some of the important theoretical developments in

modeling bond yield curves and valuing fixed-income securities. The chapter’s
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presentation has been in the context of continuous-time models and, to keep its

length manageable, many similar models set in discrete time have been omit-

ted.43 Moreover, questions regarding numerical implementation and parameter

estimation for specific models could not be addressed in the short presentations

given here.

There is a continuing search for improved ways of describing the term struc-

ture of bond prices and of valuing fixed-income derivatives. Researchers in

this field have different objectives, and the models that we presented reflect this

diversity. Much academic research focuses on analyzing equilibrium models in

hopes of better understanding the underlying macroeconomic factors that shape

the term structure of bond yields. In contrast, practitioner research concen-

trates on models that can value and hedge fixed-income derivatives. Their ideal

model would match the initial term structure, provide a parsimonious structure

for forward rate volatilities, and avoid negative, exploding forward rates. Un-

fortunately, a model with all of these characteristics is hard to find.

While in recent years research on term structure models has expanded, stud-

ies in the related field of default-risky fixed-income securities have grown even

more rapidly. The next chapter takes up this topic of valuing defaultable bonds

and credit derivatives.

17.4 Exercises

1. Consider the following example of a two-factor term structure model (Jegadeesh

and Pennacchi 1996); (Balduzzi, Das, and Foresi 1998). The instantaneous-

43Treatments of models set in discrete time include books by Robert Jarrow (Jarrow 2002),
Bruce Tuckman (Tuckman 2002), and Thomas Ho and Sang Bin Lee (Ho and Lee 2004).
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maturity interest rate is assumed to follow the physical process

dr(t) = α [γ (t)− r (t)] dt+ σrdzr

and the physical process for the interest rate’s stochastic “central ten-

dency,”γ (t), satisfies

dγ (t) = δ [γ − γ (t)] dt+ σγdzγ

where dzrdzγ = ρdt and α > 0, σr, δ > 0, γ > 0, σγ , and ρ are constants.

In addition, define the constant market prices of risk associated with dzr

and dzγ to be θr and θγ . Rewrite this model using the affi ne model

notation used in this chapter and solve for the equilibrium price of a zero-

coupon bond, P (t, T ).

2. Consider the following one-factor quadratic Gaussian model. The single

state variable, x (t), follows the risk-neutral process

dx (t) = κ [x− x (t)] dt+ σxdẑ

and the instantaneous-maturity interest rate is given by r (t, x) = α +

βx (t) + γx (t)
2. Assume κ, x, α, and γ are positive constants and that

α− 1
4β

2/γ ≥ 0, where β also is a constant. Solve for the equilibrium price

of a zero-coupon bond, P (t, T ).

3. Show that for the extended Vasicek model when r (t) ≡ 1
α∂f (0, t) /∂t +

f (0, t) +σ2
r

(
1− e−2αt

)
/
(
2α2

)
, then P (0, T ) = Ê

[
exp

(
−
∫ T

0
r (s) ds

)]
=

exp
(
−
∫ T

0
f (0, s) ds

)
.

4. Determine the value of an n-payment interest rate floor using the LIBOR

market model.
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Chapter 18

Models of Default Risk

The bond pricing models in previous chapters assumed that bonds’promised

cashflows are paid with certainty. Therefore, these models are most applicable to

valuing default-free bonds issued by a federal government, which would include

Treasury bills, notes, and bonds.1 However, many debt instruments, including

corporate bonds, municipal bonds, and bank loans, have default or “credit”risk.

Valuing defaultable debt requires an extended modeling approach. We now

consider the two primary methods for modeling default risk. The first, suggested

in the seminal option pricing paper of Fischer Black and Myron Scholes (Black

and Scholes 1973) and developed by Robert Merton (Merton 1974), Francis

Longstaff and Eduardo Schwartz (Longstaff and Schwartz 1995), and others

is called the “structural” approach. This method values a firm’s debt as an

explicit function of the value of the firm’s assets and its capital structure.

The second “reduced-form”approach more simply assumes that default is

a Poisson process with a possibly time-varying default intensity and default

1Default can be avoided on government bonds that promise a nominal (currency-valued)
payment if the government (or its central bank) has the power to print currency. However, if
a federal government relinquishes this power, as is the case for countries that adopted the Euro
supplied by the European Central Bank, default on government debt becomes a possibility.

547
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recovery rate. This method views the exogenously specified default process as

the reduced form of a more complicated and complex model of a firm’s assets and

capital structure. Examples of this approach include work by Robert Jarrow,

David Lando, and Stuart Turnbull (Jarrow, Lando, and Turnbull 1997), Dilip

Madan and Haluk Unal (Madan and Unal 1998), and Darrell Duffi e and Kenneth

Singleton (Duffi e and Singleton 1999). This chapter provides an introduction to

the main features of these two methods for incorporating default risk in bond

values.

18.1 The Structural Approach

This section focuses on a model similar to that of Robert Merton (Merton 1974).

It specifies the assets, debt, and shareholders’equity of a particular firm. Let

A(t) denote the date t value of a firm’s assets. The firm is assumed to have a

very simple capital structure. In addition to shareholders’equity, it has issued

a single zero-coupon bond that promises to pay an amount B at date T > t.

Also let τ ≡ T − t be the time until this debt matures. The firm is assumed to

pay dividends to its shareholders at the continuous rate δA(t)dt, where δ is the

firm’s constant proportion of assets paid in dividends per unit time. The value

of the firm’s assets is assumed to follow the process

dA/A = (µ− δ) dt+ σdz (18.1)

where µ denotes the instantaneous expected rate of return on the firm’s assets

and σ is the constant standard deviation of return on firm assets. Now let

D(t, T ) be the date t market value of the firm’s debt that is promised the

payment of B at date T . It is assumed that when the debt matures, the firm

pays the promised amount to the debtholders if there is suffi cient asset value to
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do so. If not, the firm defaults (bankruptcy occurs) and the debtholders take

ownership of all of the firm’s assets. Hence, the payoff to debtholders at date T

can be written as

D (T, T ) = min [B,A (T )] (18.2)

= B −max [0, B −A (T )]

From the second line in equation (18.2), we see that the payoffto the debtholders

equals the promised payment, B, less the payoff on a European put option

written on the firm’s assets and having exercise price equal to B. Hence, if

we make the usual “frictionless”market assumptions, then the current market

value of the debt can be derived to equal the present value of the promised

payment less the value of a put option on the dividend-paying assets.2 If we

let P (t, T ) be the current date t price of a default-free, zero-coupon bond that

pays $1 at date T and assume that the default-free term structure satisfies the

Vasicek model as specified earlier in (9.41) to (9.43), then using Chapter 9’s

results on the pricing of options when interest rates are random, we obtain

D (t, T ) = P (t, T )B − P (t, T )BN (−h2) + e−δτAN (−h1) (18.3)

= P (t, T )BN (h2) + e−δτAN (−h1)

where h1 =
[
ln
[
e−δτA/ (P (t, T )B)

]
+ 1

2v
2
]
/v, h2 = h1 − v, and v (τ) is given

in (9.61). Note that if the default-free term structure is assumed to be deter-

ministic, then we have the usual Black-Scholes value of v = σ
√
τ . The promised

yield to maturity on the firm’s debt, denoted R (t, T ), can be calculated from

(18.3) as R (t, T ) = 1
τ ln [B/D (t, T )]. Also, its credit spread, which is defined

2One needs to assume that the risk of the firm’s assets, as determined by the dz process, is
a tradeable risk, so that a Black-Scholes hedge involving the firm’s debt can be constructed.



550 CHAPTER 18. MODELS OF DEFAULT RISK

as the bond’s yield less that of an equivalent maturity default-free bond, can be

computed as R (t, T )− 1
τ ln [1/P (t, T )].

Based on this result, one can also solve for the market value of the firm’s

shareholder’s equity, which we denote as E (t). In the absence of taxes and other

transactions costs, the value of investors’claims on the firm’s assets, D (t, T ) +

E (t), must equal the total value of the firm’s assets, A (t). This allows us to

write

E (t) = A (t)−D (t, T ) (18.4)

= A− P (t, T )BN (h2)− e−δτAN (−h1)

= A
[
1− e−δτN (−h1)

]
− P (t, T )BN (h2)

Shareholders’ equity is similar to a call option on the firm’s assets in the

sense that at the debt’s maturity date, equity holders receive the payment

max [A (T )−B, 0]. Shareholders’ limited liability gives them the option of

receiving the firm’s residual value when it is positive. However, shareholders’

equity differs from the standard European call option if the firm pays dividends

prior to the debt’s maturity. As is reflected in the first term in the last line of

(18.4), the firm’s shareholders, unlike the holders of standard options, receive

these dividends.

Robert Merton (Merton 1974); Chapter 12 in (Merton 1992) gives an in-

depth analysis of the comparative statics properties of the debt and equity

formulas similar to equations (18.3) and (18.4), as well as the firm’s credit

spread. Note that an equity formula such as (18.4) can be useful because for

firms that have publicly traded shareholders’equity, observation of the firm’s

market value of equity and its volatility can be used to infer the market value

and volatility of the firm’s assets. The market value and volatility of the firm’s
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assets can then be used as inputs into (18.3) so that the firm’s default-risky debt

can be valued. Such an exercise based on the Merton model has been done by

the credit-rating firm Moody’s KMV to forecast corporate defaults.3

The Merton model’s assumption that the firm has a single issue of zero-

coupon debt is unrealistic, since it is commonly the case that firms have multiple

coupon-paying debt issues with different maturities and different seniorities in

the event of default. Modeling multiple debt issues and determining the point

at which an asset deficiency triggers default is a complex task.4 In response,

some research has taken a different tack by assuming that when the firm’s assets

hit a lower boundary, default is triggered. This default boundary is presumed

to bear a monotonic relation to the firm’s total outstanding debt. With the

initial value of the firm’s assets exceeding this boundary, determining future

default amounts to computing the first passage time of the assets through this

boundary.

Francis Longstaff and Eduardo Schwartz (Longstaff and Schwartz 1995) de-

veloped such a model following the earlier work of Fischer Black and John Cox

(Black and Cox 1976). They assume a default boundary that is constant over

time and, when assets sink to the level of this boundary, bondholders are as-

sumed to recover an exogenously given proportion of their bonds’face values.

This contrasts with the Merton model, where in the case of default, bondholders

recover A (T ), the stochastic value of firm assets at the bond’s maturity date,

which results in a loss of B−A (T ). In the Longstaff-Schwartz model, possible

default occurs at a stochastic date, say, τ , defined by the first (passage) time

that A (τ) = k, where k is the predetermined default boundary. Bondholders

3For a description of the KMV application of the Merton model for forecasting defaults,
see (Crosbie and Bohn 2002). Alan Marcus and Israel Shaked (Marcus and Shaked 1984)
apply the Merton model to analyzing the default risk of commercial banks that have publicly
traded shareholders’equity.

4A study by Edward Jones, Scott Mason, and Eric Rosenfeld (Jones, Mason, and Rosenfeld
1984) is an example.
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are assumed to recover δP (τ , T )B, where δ < 1 is the recovery rate equaling

a proportion of the market value of an otherwise equivalent default-free bond,

P (τ , T )B.5 This exogenous recovery rate, δ, is permitted to differ for bonds

with different maturity and seniority characteristics and might be estimated

from the historical recovery rates of different types of bonds.

Pierre Collin-Dufresne and Robert Goldstein (Collin-Dufresne and Goldstein

2001) modify the Longstaff-Schwartz model to permit a firm’s default boundary

to be stochastic. Motivated by the tendency of firms to target their leverage ra-

tios by partially adjusting their debt and equity over time, Collin-Dufresne and

Goldstein permit the ratio of firm assets to firm debt (the default boundary) to

follow a mean-reverting process with default triggered when this ratio declines

to unity.6 Chunsheng Zhou (Zhou 2001) and Jing-zhi Huang and Ming Huang

(Huang and Huang 2003) extend the Longstaff-Schwartz model in another di-

rection by allowing the firm’s assets to follow a mixed jump-diffusion process.

In this case, assets can suddenly plunge below the default boundary, making

default more abrupt than when assets have continuous sample paths. While

these “first passage time”models seek to provide more realism than the more

simple Merton model, they come at the cost of requiring numerical, rather than

closed-form, solutions.7

For firms with complicated debt structures, these first passage time models

simplify the determination of default by assuming it occurs when a firm’s assets

5P (τ , T )B is the market value of a zero-coupon bond paying the face value of B at date
T . However, Longstaff and Schwartz do not limit their analysis to defaultable zero-coupon
bonds. Indeed, they value both fixed- and floating-coupon bonds assuming a Vasicek model
of the term structure. Hence, in general, recovery equals a fixed proportion, δ, of the market
value of an otherwise equivalent default-free (fixed- or floating-rate) bond.

6More precisely, they assume that the risk-neutral process for the log of the ratio of firm
debt to assets, say, l (t) = ln [k (t) /A (t)], follows an Ornstein-Uhlenbeck process. For an
example of a model displaying mean-reverting leverage in the context of commercial bank
defaults, see (Pennacchi 2005).

7An exception is the closed-form solutions obtained by Stijn Claessens and George Pen-
nacchi (Claessens and Pennacchi 1996), who model default-risky sovereign debt such as Brady
bonds.
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sink to a specified boundary. The interaction between default and the level and

timing of particular promised bond payments are not directly modeled, except

as they might affect the specification of the default boundary. In the next

section, we consider the reduced-form approach, which goes a step further by

not directly modeling either the firm’s assets or its overall debt level.

18.2 The Reduced-Form Approach

With the reduced-form method, default need not be tied directly to the dynamics

of a firm’s assets and liabilities. As a result, this approach provides less insight

regarding the link between a firm’s balance sheet and its likelihood of default.

However, because reduced-form models generate default based on an exogenous

Poisson process, they may better capture the effects on default of additional

unobserved factors and provide richer dynamics for the term structure of credit

spreads.8 Reduced-form modeling also can be convenient because, as will be

shown, defaultable bonds are valued using techniques similar to those used to

value default-free bonds.

To illustrate reduced-form modeling, we begin by analyzing a defaultable

zero-coupon bond and, later, generalize the results to multiple-payment (coupon)

bonds. As in the previous section, let D (t, T ) be the date t value of a default-

8 In most structural models, (Zhou 2001) and (Huang and Huang 2003) are notable excep-
tions, a firm’s assets are assumed to follow a diffusion process that has a continuous sample
path. An implication of this is that default becomes highly unlikely for short horizons if the
firm currently has a substantial difference between assets and liabilities. Hence, these models
generate very small credit spreads for the short-maturity debt of creditworthy corporations,
counter to empirical evidence that finds more significant spreads. Small spreads occur be-
cause default over a short horizon cannot come as a sudden surprise. This is not the case
with reduced-form models, where sudden default is always possible due to its Poisson nature.
Hence, these models can more easily match the significant credit spreads on short-term cor-
porate debt. Darrell Duffi e and David Lando (Duffi e and Lando 2001) present a structural
model where investors have less (accounting) information regarding the value of a firm’s assets
than do the firm’s insiders. Hence, like the jump-diffusion models (Zhou 2001); and (Huang
and Huang 2003), investors’valuation of the firm’s assets can take discrete jumps when inside
information is revealed. This model generates a Poisson default intensity equivalent to a
particular reduced-form model.
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risky, zero-coupon bond that promises to pay B at its maturity date of T .

However, unlike the previous section’s structural models where default was di-

rectly linked to the dynamics of the firm’s capital structure, here we assume that

a possible default event depends on a reduced-form process that only indirectly

may be interpreted as depending on the firm’s capital structure and possibly

other macroeconomic factors that influence default. Specifically, default for

a particular firm’s bond is modeled as a Poisson process with a time-varying

default intensity. Conditional on default having not occurred prior to date t,

the instantaneous probability of default during the interval (t, t+ dt) is denoted

λ (t) dt, where λ (t) is the physical default intensity, or “hazard rate,” and is

assumed to be nonnegative.9 The time-varying nature of λ (t) may be linked

to variation in state variables, as will be shown shortly.

Note from the definition of the instantaneous default intensity, λ (t), one

can compute the physical probability that the bond does not default over the

discrete time interval from dates t to τ , where t < τ ≤ T . This probability is

referred to as the bond’s (physical) survival probability over the interval from

dates t to τ and is given by

Et

[
e−
∫ τ
t
λ(u)du

]
(18.5)

18.2.1 A Zero-Recovery Bond

To determine D (t, T ), an assumption must be made regarding the payoff re-

ceived by bondholders should the bond default. We begin by assuming that

9Recall that in Chapter 11 we modeled jumps in asset prices as following a Poisson process
with jump intensity λ. Here, a one-time default follows a Poisson process, and its intensity
is explicitly time varying.
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bondholders recover nothing if the bond defaults and, later, we generalize this

assumption to permit a possible nonzero recovery value. With zero recovery,

the bondholders’ date T payoff is either D (T, T ) = B if there is no default

or D (T, T ) = 0 if default has occurred over the interval from t to T . Ap-

plying risk-neutral pricing, the date t value of the zero-recovery bond, denoted

DZ (t, T ), can be written as

DZ (t, T ) = Êt

[
e−
∫ T
t
r(u)duD (T, T )

]
(18.6)

where r (t) is the date t instantaneous default-free interest rate, and Êt [·] is the

date t risk-neutral expectations operator. To compute this expression, we need

to determine the expression for D (T, T ) in terms of the risk-neutral default

intensity, rather than the physical default intensity. The risk-neutral default

intensity will account for the market price of risk associated with the Poisson

arrival of a default event.

To understand the role of default risk, suppose that both the default-free

term structure and the firm’s default intensity depend on a set of n state vari-

ables, xi, i = 1, ..., n, that follow the multivariate Markov diffusion process10

dx = a (t,x) dt+ b (t,x) dz (18.7)

where x = (x1...xn)
′, a (t,x) is an n× 1 vector, b (t,x) is an n× n matrix, and

dz = (dz1...dzn)
′ is an n× 1 vector of independent Brownian motion processes

so that dzidzj = 0 for i 6= j. As in the previous chapter, x (t) includes macro-

economic factors that affect the default-free term structure, but it now also

includes firm-specific factors that affect the likelihood of default for the partic-
10For concreteness our presentation assumes an equilibrium Markov state variable environ-

ment. However, much of our results on reduced-form pricing of defaultable bonds carries over
to a non-Markov, no-arbitrage context, such as the Heath-Jarrow-Morton framework. See
(Duffi e and Singleton 1999), (Fan and Ritchken 2001), and (Ritchken and Sun 2003).
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ular firm. Similar to (17.8), the stochastic discount factor for pricing the firm’s

default-risky bond will be of the form

dM/M = −r (t,x) dt−Θ (t,x)
′
dz−ψ (t,x) [dq − λ (t,x) dt] (18.8)

where Θ (t,x) is an n× 1 vector of the market prices of risk associated with the

elements of dz and ψ (t,x) is the market price of risk associated with the actual

default event. This default event is recorded by dq, which is a Poisson counting

process similar to that described in equation (11.2) of Chapter 11. When default

occurs, this Poisson counting process q (t) jumps from 0 (the no-default state) to

1 (the absorbing default state) at which time dq = 1.11 The risk-neutral default

intensity, λ̂ (t,x), is then given by λ̂ (t,x) = [1−ψ (t,x)]λ (t,x). Note that in

this modeling context, default is a “doubly stochastic”process, also referred to

as a Cox process.12 Default depends on the Brownian motion vector dz that

drives x and determines how the likelihood of default, λ̂ (t,x), changes over

time, but it also depends on the Poisson process dq that determines the arrival

of default. Hence, default risk reflects two types of risk premia, Θ (t,x) and

ψ (t,x).

Based on the calculation of survival probability in (18.5), the value of the

zero-recovery defaultable bond is

DZ (t, T ) = Êt

[
e−
∫ T
t
r(u)due−

∫ T
t
λ̂(u)duB

]
= Êt

[
e−
∫ T
t [r(u)+λ̂(u)]du

]
B (18.9)

Equation (18.9) shows that valuing this zero-recovery defaultable bond is similar

11Recall from the discussion in Chapter 11 that jumps in an asset’s value, as would occur
when a bond defaults, cannot always be hedged. Thus, in general, it may not be possible to
determine ψ (t,x) based on a no-arbitrage restriction. This market price of default risk may
need to be determined from an equilibrium model of investor preferences.
12Named after the statistician Sir David Cox (Cox 1955).
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to valuing a default-free bond except that we use the discount rate of r (u)+λ̂ (u)

rather than just r (u). Given specific functional forms for r (t,x), λ̂ (t,x), and

the risk-neutral state variable process (specifications of (18.7) and Θ (t,x)), the

expression in (18.9) can be computed.

18.2.2 Specifying Recovery Values

The value of a bond that has a possibly nonnegative recovery value in the

event of default equals the value in (18.9) plus the present value of the amount

recovered in default. Suppose that if the bond defaults at date τ where t <

τ ≤ T , bondholders recover an amount w (τ ,x) at date τ . Now note that the

risk-neutral probability density of defaulting at time τ is

e−
∫ τ
t
λ̂(u)duλ̂ (τ) (18.10)

In (18.10), λ̂ (τ) is discounted by exp
[
−
∫ τ
t
λ̂ (u) du

]
because default at date τ

is conditioned on not having defaulted previously. Therefore, the present value

of recovery in the event of default, DR (t, T ), is computed by integrating the

expected discounted value of recovery over all possible default dates from t to

T :

DR (t, T ) = Êt

[∫ T

t

e−
∫ τ
t
r(u)duw (τ) e−

∫ τ
t
λ̂(u)duλ̂ (τ) dτ

]

= Êt

[∫ T

t

e−
∫ τ
t [r(u)+λ̂(u)]duλ̂ (τ)w (τ) dτ

]
(18.11)
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Putting this together with (18.9) gives the bond’s total value, D (t, T ) =

DZ (t, T ) +DR (t, T ), as

D (t, T ) = Êt

[
e−
∫ T
t [r(s)+λ̂(s)]dsB +

∫ T

t

e−
∫ τ
t [r(s)+λ̂(s)]dsλ̂ (τ)w (τ) dτ

]
(18.12)

Recovery Proportional to Par Value

Let us consider some particular specifications for w (τ ,x). One assumption

used by several researchers is that bondholders recover at the default date τ a

proportion of the bond’s face, or par, value; that is, w (τ ,x) = δ (τ ,x)B, where

δ (τ ,x) is usually assumed to be a constant, say, δ.13 In this case, (18.11) can

be written as

DR (t, T ) = δB

∫ T

t

k (t, τ) dτ (18.13)

where

k (t, τ) ≡ Êt
[
e−
∫ τ
t [r(u)+λ̂(u)]duλ̂ (τ)

]
(18.14)

has a closed-form solution when r (u,x) and λ̂ (u,x) are affi ne functions of x

and the vector x in (18.7) has a risk-neutral process that is also affi ne.14 In this

case, the recovery value in (18.13) can be computed by numerical integration of

k (t, τ) over the interval from t to T .

Recovery Proportional to Par Value, Payable at Maturity

An alternative recovery assumption is that if default occurs at date τ , the bond-

holders recover a proportion δ (τ ,x) of the bond’s face value, B, payable at the

13Work by Darrell Duffi e (Duffi e 1998), David Lando (Lando 1998), and Dilip Madan and
Haluk Unal (Madan and Unal 1998) makes this assumption. As reported by Gregory Duffee
(Duffee 1999), the recovery rate, δ, estimated by Moody’s for senior unsecured bondholders,
is approxmately 44 percent.
14This is shown in (Duffi e, Pan, and Singleton 2000).
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maturity date T .15 This is equivalent to assuming that the bondholders recover

a proportion δ (τ ,x) of the market value of a default-free discount bond paying

B at date T ; that is, w (τ ,x) = δ (τ ,x)P (τ , T )B. Under this assumption,

(18.11) becomes

DR (t, T ) = Êt

[∫ T

t

e−
∫ τ
t [r(u)+λ̂(u)]duλ̂ (τ) δ (τ ,x) e−

∫ T
τ
r(u)duBdτ

]

= Êt

[∫ T

t

e−
∫ τ
t
λ̂(u)duλ̂ (τ) δ (τ ,x) e−

∫ T
t
r(u)duBdτ

]

= Êt

[
e−
∫ T
t
r(u)du

∫ T

t

e−
∫ τ
t
λ̂(u)duλ̂ (τ) δ (τ ,x) dτ

]
B (18.15)

For the specific case of δ (τ , x) = δ, a constant, this expression can be simplified

by noting that the term
∫ T
t

exp
[
−
∫ τ
t
λ̂ (u) du

]
λ̂ (τ) dτ is the total risk-neutral

probability of default for the period from date t to the maturity date T . There-

fore, it must equal 1 − exp
[
−
∫ T
t
λ̂ (u) du

]
; that is, 1 minus the probability of

surviving over the same period. Making this substitution and using (18.9), we

have

DR (t, T ) = Êt

[
e−
∫ T
t
r(u)du

(
1− e−

∫ T
t
λ̂(u)du

)]
δB

= Êt

[
e−
∫ T
t
r(u)du − e−

∫ T
t [r(u)+λ̂(u)]du

]
δB

= δBP (t, T )− δDZ (t, T ) (18.16)

Therefore, the total value of the bond is

D (t, T ) = DZ (t, T ) +DR (t, T ) =
(
1− δ

)
DZ (t, T ) + δBP (t, T ) (18.17)

15This specification has been studied by Robert Jarrow and Stuart Turnbull (Jarrow and
Turnbull 1995) and David Lando (Lando 1998).
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Hence, this recovery assumption amounts to requiring only a solution for the

value of a zero-recovery bond.

Recovery Proportional to Market Value

Let us consider one additional recovery assumption analyzed by Darrell Duffi e

and Kenneth Singleton (Duffi e and Singleton 1999). When default occurs,

bondholders are assumed to recover a proportion of what was the bond’s market

value just prior to default. This is equivalent to assuming that the bond’s

market value jumps downward at the default date τ , suffering a proportional

loss of L (τ ,x). Specifically, at default D (τ−, T ) jumps to

D
(
τ+, T

)
= w (τ ,x) = D

(
τ−, T

)
[1− L (τ ,x)] (18.18)

By specifying a proportional loss in value at the time of default, the bond’s

dynamics become similar to the jump-diffusion model of asset prices presented

in Chapter 11. Treating the defaultable bond as a contingent claim and applying

Itô’s lemma, its process prior to default is similar to equation (11.6):

dD (t, T ) /D (t, T ) = (αD − λkD) dt+ σ′Ddz− L (t,x) dq (18.19)

where αD and the n×1 vector σD are given by the usual Itô’s lemma expressions

similar to (11.7) and (11.8). From (11.3) and (18.18), we have that when a

jump occurs [D (τ+, T )−D (τ−, T )] /D (τ−, T ) = −L (τ ,x), which verifies the

term −L (t,x) dq. Also, from (11.10), kD, the expected jump size, is given by

kD (τ−) ≡ Eτ− [D (τ+, T )−D (τ−, T )] /D (τ−, T ) = −L (τ ,x), so that the drift

term in (18.19) becomes αD + λ (t,x)L (t,x).

Now under the risk-neutral measure, the defaultable bond’s total expected

rate of return, αD, must equal the instantaneous-maturity, default-free rate,
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r (t). Thus, we can write the bond’s risk-neutral process prior to default as

dD (t, T ) /D (t, T ) =
(
r (t,x) + λ̂ (t,x) L̂ (t,x)

)
dt+σ′Ddẑ− L̂ (t,x) dq (18.20)

where L̂ (t,x) is the risk-neutral expected proportional loss given default.16 The

intuition of (18.20) is that because the bond has a risk-neutral expected loss

given default of L̂ (t,x), and the risk-neutral instantaneous probability of de-

fault (dq = 1) is λ̂ (t,x), when the bond does not default it must earn an

excess expected return of λ̂ (t,x) L̂ (t,x) to make its unconditional risk-neutral

expected return equal r (t). Based on a derivation similar to that used to obtain

(11.17) and (17.6), one can show that the defaultable bond’s value satisfies the

equilibrium partial differential equation

1
2Trace

[
b (t,x) b (t,x)

′
Dxx

]
+ â (t,x)

′
Dx −R (t,x)D +Dt = 0 (18.21)

where Dx denotes the n × 1 vector of first derivatives of D (t,x) with respect

to each of the factors and, similarly, Dxx is the n × n matrix of second-order

mixed partial derivatives. In addition, â (t,x) = a (t,x)−b (t,x) Θ is the risk-

neutral drift of the factor process (18.7), and R (t,x) ≡ r (t,x) + λ̂ (t,x) L̂ (t,x)

is the defaultable bond’s risk-neutral drift in the process (18.20). Note that if

the bond reaches the maturity date, T , without defaulting, then D (T, T ) = B.

This is the boundary condition for (18.21). The PDE (18.21) is in the form of

a PDE for a standard contingent claim except that R (t,x) has replaced r (t,x)

16As with the risk-neutral default intensity, λ̂ (t,x), there may be a market price of recovery
risk associated with L̂ (t,x) that distinguishes it from the physical expected loss at default,
L (t,x). This market price of recovery risk cannot, in general, be determined from a no-
arbitrage restriction because recovery risk may be unhedgeable. Most commonly, modelers
simply posit functional forms for risk-neutral variables in order to derive formulas for default-
able bond values. Differences between risk-neutral default intensities and losses at default
and their physical counterparts might be inferred based on the market prices of defaultable
bonds and historical (physical) default and recovery rates.
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in the standard PDE. This insight allows us to write the PDE’s Feynman-Kac

solution as17

D (t, T ) = Êt

[
e−
∫ T
t
R(u,x)du

]
B (18.22)

where R (t,x) ≡ r (t,x)+λ̂ (t,x) L̂ (t,x) can be viewed as the “default-adjusted”

discount rate. The product s (t,x) ≡ λ̂ (t,x) L̂ (t,x) is interpreted as the “credit

spread” on an instantaneous-maturity, defaultable bond. Since λ̂ (t,x) and

L̂ (t,x) are not individually identified in (18.22), when implementing this for-

mula, one can simply specify a single functional form for s (t,x).

18.2.3 Examples

Because default intensities and/or credit spreads must be nonnegative, a popu-

lar stochastic process for modeling these variables is the mean-reverting, square

root process used in the term structure model of John Cox, Jonathan Ingersoll,

and Stephen Ross (Cox, Ingersoll, and Ross 1985b). To take a very simple

example, suppose that x = (x1 x2)
′ is a two-dimensional vector, â (t,x) =

(κ1 (x1 − x1) κ2 (x2 − x2))
′, and b (t,x) is a diagonal matrix with first and

second diagonal elements of σ1
√
x1 and σ2

√
x2, respectively. If one assumes

r (t,x) = x1 (t) and λ̂ (t,x) = x2 (t), this has the implication that the default-

free term structure and the risk-neutral default intensity are independent. Ar-

guably, this is unrealistic since empirical work tends to find a negative correlation

between default-free interest rates and the likelihood of corporate defaults.18

Allowing for nonzero correlation between r (t,x) and λ̂ (t,x) while restricting

each to be positive is certainly feasible but comes at the cost of requiring numer-

17Recall from Chapter 10 that (10.17) was shown to be the Feynman-Kac solution to the
Black-Scholes PDE (10.7). See Darrell Duffi e and Kenneth Singleton (Duffi e and Singleton
1999) for an alternative derivation of (18.22) that does not involve specification of factors or
the bond’s PDE.
18This evidence is presented in work by Gregory Duffee (Duffee 1999) and Pierre Collin-

Dufresne and Bruno Solnik (Collin-Dufresne and Solnik 2001).
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ical, rather than closed-form, solutions for defaultable bond values.19 Hence,

for simplicity of presentation, we maintain the independence assumption in the

examples that follow.

With r (t,x) = x1 (t) and denoting x1 = r, we obtain the Cox, Ingersoll, and

Ross formula for the value of a default-free discount bond:20

P (t, T ) = A1 (τ) e−B1(τ)r(t) (18.23)

where

A1 (τ) ≡
[

2θ1e
(θ1+κ1) τ2

(θ1 + κ1) (eθ1τ − 1) + 2θ1

]2κ1r/σ
2
1

(18.24)

B1 (τ) ≡
2
(
eθ1τ − 1

)
(θ1 + κ1) (eθ1τ − 1) + 2θ1

(18.25)

and θ1 ≡
√
κ2

1 + 2σ2
1. Also with λ̂ (t,x) = x2 (t) and denoting x2 = λ, then

based on (18.9) and the assumed independence of r (t) and λ̂ (t), we can write

the value of the zero-recovery bond as

DZ (t, T ) = Êt

[
e−
∫ T
t [r(s)+λ̂(s)]ds

]
B

= Êt

[
e−
∫ T
t
r(s)ds

]
Êt

[
e−
∫ T
t
λ̂(s)ds

]
B

= P (t, T )V (t, T )B (18.26)

19For models with more flexible correlation structures that require numerical solutions, see
examples given by Darrell Duffi e and Kenneth Singleton (Duffi e and Singleton 1999). Some
research has dropped the restriction that r (t) and λ̂ (t) (or s (t) = λ̂ (t)L (t)) be positive by
assuming these variables follow multivariate affi ne Gaussian processes. This permits general
correlation between default-free interest rates and default intensities as well as closed-form
solutions for defaultable bonds. The model in work by C.V.N. Krishnan, Peter Ritchken, and
James Thomson (Krishnan, Ritchken, and Thomson 2004) is an example of this.
20The formula in (18.23) to (18.25) is the same as (13.51) to (13.53) except that it is written

in terms of the parameters of the risk-neutral, rather than physical, process for r (t). Hence,
relative to our earlier notation, κ1 = κ+ψ, where the market price of interest-rate risk equals
θ (t) = −ψ

√
r/σ1.
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where

V (t, T ) = A2 (τ) e−B2(τ)λ̂(t) (18.27)

and where A2 (τ) is the same as A1 (τ) in (18.24), and B2 (τ) is the same as

B1 (τ) in (18.25) except that κ2 replaces κ1, σ2 replaces σ1, λ replaces r, and

θ2 ≡
√
κ2

2 + 2σ2
2 replaces θ1.

If we assume that recovery is a fixed proportion, δ, of par value, payable at

maturity, then based on (18.17) the value of the defaultable bond equals

D (t, T ) =
(
1− δ

)
DZ (t, T ) + δBP (t, T )

=
[
δ +

(
1− δ

)
V (t, T )

]
P (t, T )B (18.28)

In (18.27), V (t, T ) is analogous to a bond price in the standard Cox, Ingersoll,

and Ross term structure model, and as such it will be inversely related to λ̂ (t)

and strictly less than 1 whenever λ̂ (t) is strictly positive, which can be ensured

when 2κ2λ ≥ σ2
2. Thus, (18.28) confirms that the defaultable bond’s value

declines as its risk-neutral default intensity rises.

A slightly different defaultable bond formula can be obtained when recovery

is assumed to be proportional to market value and s (t,x) ≡ λ̂ (t,x) L̂ (t,x) = x2

with the notation x2 = s. In this case, (18.22) becomes

D (t, T ) = Êt

[
e−
∫ T
t

[r(u)+s(u)]du
]
B

= Êt

[
e−
∫ T
t
r(u)du

]
Êt

[
e−
∫ T
t
s(u)du

]
B

= P (t, T )S (t, T )B (18.29)

where

S (t, T ) = A2 (τ) e−B2(τ)s(t) (18.30)
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and where A2 (τ) is the same as A1 (τ) in (18.24) and B2 (τ) is the same as

B1 (τ) in (18.25) except that κ2 replaces κ1, σ2 replaces σ1, s replaces r, and

θ2 ≡
√
κ2

2 + 2σ2
2 replaces θ1. This defaultable bond is priced similarly to a

default-free bond except that the instantaneous-maturity interest rate, R (t) =

r (t) + s (t), is now the sum of two nonnegative square root processes. Hence,

the defaultable bond is inversely related to s (t) and can be strictly less than

the default-free bond as s (t) can always be positive when 2κ2s ≥ σ2
2.

Coupon Bonds

Valuing the defaultable coupon bond of a particular issuer (e.g., corporation) is

straightforward given the preceding analysis of defaultable zero-coupon bonds.

Suppose that the issuer’s coupon bond promises n cashflows, with the ith

promised cashflow being equal to ci and being paid at date Ti > t. Then

the value of this coupon bond in terms of our zero-coupon bond formulas is

n∑
i=1

D (t, Ti)
ci
B

(18.31)

Credit Default Swaps

Our results can also be applied to valuing credit derivatives. A credit default

swap is a popular credit derivative that typically has the following structure.

One party, the protection buyer, makes periodic payments until the contract’s

maturity date as long as a particular issuer, bond, or loan does not default.

The other party, the protection seller, receives these payments in return for

paying the difference between the bond or loan’s par value and its recovery

value if default occurs prior to the maturity of the swap contract. At the initial

agreement date of this swap contract, the periodic payments are set such that

the initial contract has a zero market value.
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We can use our previous analysis to value each side of this swap. Let the

contract specify equal period payments of c at future dates t + ∆, t + 2∆, ...,

t+ n∆.21 Then recognizing that these payments are contingent on default not

occurring and that they have zero value following a possible default event, their

market value equals
c

B

n∑
i=1

DZ (t, t+ i∆) (18.32)

where DZ (t, T ) is the value of the zero-recovery bond given in (18.9). If we

let w (τ ,x) be the recovery value of the defaultable bond (or loan) underlying

the swap contract, then assuming this bond’s maturity date is T ≥ t+ n∆, the

value of the swap protection can be computed similarly to (18.11) as

Êt

[∫ t+n∆

t

e−
∫ τ
t [r(u)+λ̂(u)]duλ̂ (τ) [B − w (τ)] dτ

]
(18.33)

The protection seller’s payment in the event of default, B − w (τ), is often

simplified by assuming recovery is a fixed proportion of par value, that is, B −

w (τ) = B − δB = B
(
1− δ

)
. For this special case, (18.33) becomes

B
(
1− δ

) ∫ t+n∆

t

k (t, τ) dτ (18.34)

where k (t, τ) is defined in (18.14). Given assumptions regarding the functional

forms of r (t,x), λ̂ (t,x), and w (t,x), and the state variables x, the value of the

swap payments, c, that equates (18.32) to (18.33) can be determined.

A general issue that arises when implementing the reduced-form approach to

valuing risky debt is determining the proper current values λ̂ (t), s (t), or w (t)

that may not be directly observable. One or more of these default variables

might be inferred by setting the actual market prices of one or more of an issuer’s

21A period of ∆ = one-half year is common since these payments often coincide with an
underlying coupon bond making semiannual payments.
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bonds to their theoretical formulas. Then, based on the “implied” values of

λ̂ (t), s (t), or w (t), one can determine whether a given bond of the same issuer

is over- or underpriced relative to other bonds. Alternatively, these implied

default variables could be used to set the price of a new bond of the same issuer

or a credit derivative (such as a default swap) written on the issuer’s bonds.

18.3 Summary

Research on credit risk has grown rapidly in recent years. In part, the expan-

sion of this literature derives from a greater interest by financial institutions in

credit risk management and credit derivatives.22 New risk management prac-

tices and credit derivatives are being spawned as the techniques for quantifying

and pricing credit risk evolve. This chapter introduced the two main branches

of modeling defaultable fixed-income securities. The structural approach mod-

els default based on the interaction between a firm’s assets and its liabilities.

Potentially, it can improve our understanding between capital structure and cor-

porate bond and loan prices. In contrast, the reduced-form method abstracts

from specific characteristics of a firm’s financial structure. However, it can per-

mit a more flexible modeling of default probabilities and may better describe

actual the prices of an issuer’s debt.

While this chapter has been limited to models of corporate defaults, the

credit risk literature also encompasses additional topics such as consumer credit

risk and the credit risk of (securitized) portfolios of loans and bonds. Inter-

22 Interest in risk management has been stimulated by the adoption of risk-based capital
standards formulated by the Basel Committee on Banking Supervision. This committee is
composed of bank supervisors of the major developed countries. International bank capital
standards were first devised in 1988 and are referred to as the Basel Capital Accord. A
framework for revised capital standards that depend more intricately on credit and other
risks, known as Basel II, was issued by the committee in June of 2004. The Basel II rules link
a bank’s minimum capital to its level of credit risk on bonds, loans, and credit derivatives.
See (Basel Committee on Banking Supervision 2005).
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est by both academics and practitioners in the broad field of credit risk will

undoubtedly continue.

18.4 Exercises

1. Consider the example given in the “structural approach”to modeling de-

fault risk. Maintain the assumptions made in the chapter but now suppose

that a third party guarantees the firm’s debtholders that if the firm de-

faults, the debtholders will receive their promised payment of B. In other

words, this third-party guarantor will make a payment to the debtholders

equal to the difference between the promised payment and the firm’s as-

sets if default occurs. (Banks often provide such a guarantee in the form

of a letter of credit. Insurance companies often provide such a guarantee

in the form of bond insurance.)

What would be the fair value of this bond insurance at the initial date, t?

In other words, what is the competitive bond insurance premium charged

at date t?

2. Consider a Merton-type “structural”model of credit risk (Merton 1974).

A firm is assumed to have shareholders’equity and two zero-coupon bonds

that both mature at date T . The first bond is “senior”debt and promises

to pay B1 at maturity date T , while the second bond is “junior” (or

subordinated) debt and promises to pay B2 at maturity date T . Let A (t),

D1 (t), and D2 (t) be the date t values of the firm’s assets, senior debt,

and junior debt, respectively. Then the maturity values of the bonds are

D1 (T ) =

 B1 if A (T ) ≥ B1

A (T ) otherwise
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D2 (T ) =


B2 if A (T ) ≥ B1 +B2

A (T )−B1 if B1 +B2 > A (T ) ≥ B1

0 otherwise

The firm is assumed to pay no dividends to its shareholders, and the value

of shareholders’equity at date T , E (T ), is assumed to be

E (T ) =

 A (T )− (B1 +B2) if A (T ) ≥ B1 +B2

0 otherwise

Assume that the value of the firm’s assets follows the process

dA/A = µdt+ σdz

where µ denotes the instantaneous expected rate of return on the firm’s

assets and σ is the constant standard deviation of return on firm assets. In

addition, the continuously compounded, risk-free interest rate is assumed

to be the constant r. Let the current date be t, and define the time until

the debt matures as τ ≡ T − t.

a. Give a formula for the current, date t, value of shareholders’equity, E (t).

b. Give a formula for the current, date t, value of the senior debt, D1 (t).

c. Using the results from parts (a.) and (b.), give a formula for the current,

date t, value of the junior debt, D2 (t).

3. Consider a portfolio of m different defaultable bonds (or loans), where

the ith bond has a default intensity of λi (t,x) where x is a vector of state

variables that follows the multivariate diffusion process in (18.7). Assume

that the only source of correlation between the bonds’defaults is through
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their default intensities. Suppose that the maturity dates for the bonds

all exceed date T > t. Write down the expression for the probability that

none of the bonds in the portfolio defaults over the period from date t to

date T .

4. Consider the standard “plain vanilla”swap contract described in Chapter

17. In equation (17.74) it was shown that under the assumption that

each party’s payments were default free, the equilibrium swap rate agreed

to at the initiation of the contract, date T0, equals

s0,n (T0) =
1− P (T0, Tn+1)

τ
∑n+1
j=1 P (T0, Tj)

where for this contract, fixed-interest-rate coupon payments are exchanged

for floating-interest-rate coupon payments at the dates T1, T2, ...,Tn+1,

where Tj+1 = Tj + τ and τ is the maturity of the LIBOR of the floating-

rate coupon payments. This swap rate formula is valid when neither of

the parties have credit risk. Suppose, instead, that they both have the

same credit risk, and it is equivalent to the credit risk reflected in LIBOR

interest rates. (Recall that LIBOR reflects the level of default risk for

a large international bank.) Moreover, assume a reduced-form model of

default with recovery proportional to market value, so that the value of

a LIBOR discount bond promising $1 at maturity date Tj is given by

(18.22):

D (T0, Tj) = ÊT0

[
e−
∫ Tj
T0

R(u,x)du

]
where the default-adjusted instantaneous discount rate R (t,x) ≡ r (t,x)+

λ̂ (t,x) L̂ (t,x) is assumed to be the same for both parties. Assume that

if default occurs at some date τ < Tn+1, the counterparty whose position

is in the money (whose position has positive value) suffers a proportional
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loss of L (τ ,x) in that position. Show that under these assumptions, the

equilibrium swap rate is

s0,n (T0) =
1−D (T0, Tn+1)

τ
∑n+1
j=1 D (T0, Tj)
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