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Chapter 12

Continuous-Time

Consumption and Portfolio

Choice

Until now our applications of continuous-time stochastic processes have focused

on the valuation of contingent claims. In this chapter we revisit the topic in-

troduced in Chapter 5, namely, an individual’s intertemporal consumption and

portfolio choice problem. However, rather than assume a discrete-time setting,

we now examine this problem where asset prices are subject to continuous, ran-

dom changes and an individual can adjust consumption and portfolio allocations

at any time. Specifically, this chapter assumes that an individual maximizes a

time-separable expected utility function that depends on the rate of consump-

tion at all future dates. The savings of this individual are allocated among

assets whose returns follow diffusion processes of the type first introduced in

Chapter 8. Hence, in this environment, the values of the individual’s portfolio
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332 CHAPTER 12. CONTINUOUS TIME PORTFOLIO CHOICE

holdings and total wealth change constantly and, in general, it is optimal for

the individual to make continuous rebalancing decisions.

The continuous-time consumption and portfolio choice problem just de-

scribed was formulated and solved in two papers by Robert Merton (Merton

1969); (Merton 1971). This work was the foundation of his model of intertem-

poral asset pricing (Merton 1973a), which we will study in the next chapter.

As we discuss next, allowing individuals to rebalance their portfolios contin-

uously can lead to qualitatively different portfolio choices compared to those

where portfolios can only be adjusted at discrete dates. This, in turn, means

that the asset pricing implications of individuals’decisions in continuous time

can sometimes differ from those of a discrete-time model. Continuous trad-

ing may enable markets to be dynamically complete and lead to sharper asset

pricing results. For this reason, continuous-time consumption and portfolio

choice models are often used in financial research on asset pricing. Much of our

analysis in later chapters will be based on such models.

By studying consumption and portfolio choices in continuous time, the effects

of time variation in assets’ return distributions, that is, changing investment

opportunities, become transparent. As will be shown, individuals’ portfolio

choices include demands for assets that are the same as those derived from the

single-period mean-variance analysis of Chapter 2. However, portfolio choices

also include demands for assets that hedge against changes in investment oppor-

tunities. This is a key insight that differentiates single-period and multiperiod

models and has implications for equilibrium asset pricing.

The next section outlines the assumptions of an individual’s consumption

and portfolio choice problem for a continuous-time environment. Then, similar

to what was done in solving for an individual’s decisions in discrete time, we

introduce and apply a continuous-time version of stochastic dynamic program-
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ming to derive consumption and portfolio demands. This technique leads to

a nonlinear partial differential equation that can be solved to obtain optimal

decision rules. Portfolio behaviors for both constant investment opportunities

and changing investment opportunities are analyzed. We next present an alter-

native martingale approach to finding an individual’s optimal consumption and

portfolio choices. This martingale technique is most applicable to situations

when markets are dynamically complete and involves computing an expectation

of future discounted consumption rates or solving a Black-Scholes-type linear

partial differential equation for wealth. We illustrate this solution method by

an example where an individual faces risky-asset returns that are negatively

correlated with investment opportunities.

12.1 Model Assumptions

Let us assume that an individual allocates his wealth between n different risky

assets plus a risk-free asset. Define Si (t) as the price of the ith risky asset

at date t. This asset’s instantaneous rate of return is assumed to satisfy the

process1

dSi(t) / Si(t) = µi (x, t) dt + σi (x, t) dzi (12.1)

where i = 1, ..., n and (σi dzi)(σj dzj) = σij dt. In addition, let the instanta-

neous risk-free return be denoted as r (x, t). It is assumed that µi, σi, and r

may be functions of time and a k× 1 vector of state variables, which we denote

by x (t) = (x1...xk)
′. When the µi, σi, and/or r are time varying, the investor

is said to face changing investment opportunities. The state variables affecting

the moments of the asset prices can, themselves, follow diffusion processes. Let

1Equation (12.1) expresses a risky asset’s rate of return process in terms of its proportional
price change, dSi/Si. However, if the asset pays cashflows (e.g., dividends or coupons), then
Si (t) can be reinterpreted as the value of an investment in the risky asset where all cashflows
are reinvested. What is essential is the asset’s return process, not whether returns come in
the form of cash payouts or capital gains.
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the ith state variable follow the process

dxi = ai (x, t) dt+ bi (x, t) dζi (12.2)

where i = 1, ..., k. The process dζi is a Brownian motion with (bi dζi)(bj dζj) =

bij dt and (σi dzi)(bj dζj) = φij dt. Hence, equations (12.1) and (12.2) indicate

that up to n+ k sources of uncertainty (Brownian motion processes) affect the

distribution of asset returns.

We denote the value of the individual’s wealth portfolio at date t as Wt and

define Ct as the individual’s date t rate of consumption per unit time. Also,

let ωi be the proportion of total wealth allocated to risky asset i, i = 1, ..., n.

Similar to our analysis in Chapter 9 and treating consumption as a net cash

outflow from the individual’s wealth portfolio, we can write the dynamics of

wealth as2

dW =

[
n∑
i=1

ωidSi/Si +

(
1−

n∑
i=1

ωi

)
rdt

]
W − Cdt (12.3)

=

n∑
i=1

ωi(µi − r)W dt + (rW − C) dt +

n∑
i=1

ωiWσi dzi

We can now state the individual’s intertemporal consumption and portfolio

choice problem:

max
Cs,{ωi,s},∀s,i

Et

[∫ T

t

U (Cs, s) ds + B(WT , T )

]
(12.4)

subject to the constraint (12.3).

2Our presentation assumes that there are no other sources of wealth, such as wage income.
If the model is extended to include a flow of nontraded wage income received at date t, say,
yt, it could be incorporated into the individual’s intertemporal budget constraint in a manner
similar to that of consumption but with an opposite sign. In other words, the term (Ct − yt)
would replace Ct in our derivation of the individual’s dynamic budget constraint. Duffi e,
Fleming, Soner, and Zariphopoulou (Duffi e, Fleming, Soner, and Zariphopoulou 1997) solve
for optimal consumption and portfolio choices when the individual receives stochastic wage
income.
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The date t utility function, U (Ct, t), is assumed to be strictly increasing and

concave in Ct and the bequest function, B(WT , T ), is assumed to be strictly

increasing and concave in terminal wealth, WT . This problem, in which the in-

dividual has time-separable utility of consumption, is analogous to the discrete-

time problem studied in Chapter 5. The variables Ws and x (s) are the date s

state variables while the individual chooses the control variables Cs and ωi (s),

i = 1, ..., n, for each date s over the interval from dates t to T .

Note that some possible constraints have not been imposed. For example,

one might wish to impose the constraint Ct ≥ 0 (nonnegative consumption)

and/or ωi ≥ 0 (no short sales). However, for some utility functions, negative

consumption is never optimal, so that solutions satisfying Ct ≥ 0 would result

even without the constraint.3

Before we attempt to solve this problem, let’s digress to consider how sto-

chastic dynamic programming applies to a continuous-time setting.

12.2 Continuous-Time Dynamic Programming

To illustrate the principles of dynamic programming in continuous time, consider

a simplified version of the problem specified in conditions (12.3) to (12.4) where

there is only one choice variable:

max
{c}

Et

[∫ T

t

U(cs, xs) ds

]
(12.5)

subject to

dx = a(x, c) dt + b(x, c) dz (12.6)

3For example, if lim
Ct→0

∂U(Ct,t)
∂Ct

= ∞, as would be the case if the individual’s utility

displayed constant relative risk aversion (power utility), then the individual would always
avoid nonpositive consumption. However, other utility functions, such as constant absolute-
risk-aversion (negative exponential) utility, do not display this property.
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where ct is a control variable (such as a consumption and/or vector of portfolio

proportions) and xt is a state variable (such as wealth and/or a variable that

changes investment opportunities, that is, a variable that affects the µi’s and/or

σi’s). As in Chapter 5, define the indirect utility function, J(xt, t), as

J(xt, t) = max
{c}

Et

[∫ T

t

U(cs, xs) ds

]
(12.7)

= max
{c}

Et

[∫ t+∆t

t

U(cs, xs) ds +

∫ T

t+∆t

U(cs, xs) ds

]

Now let us apply Bellman’s Principle of Optimality. Recall that this concept

says that an optimal policy must be such that for a given future realization of

the state variable, xt+∆t, (whose value may be affected by the optimal control

policy at date t and earlier), any remaining decisions at date t + ∆t and later

must be optimal with respect to xt+∆t. In other words, an optimal policy must

be time consistent. This allows us to write

J(xt, t) = max
{c}

Et

[∫ t+∆t

t

U(cs, xs) ds + max
{c}

Et+∆t

[∫ T

t+∆t

U(cs, xs) ds

]]

= max
{c}

Et

[∫ t+∆t

t

U(cs, xs) ds + J(xt+∆t, t+ ∆t)

]
(12.8)

Equation (12.8) has the recursive structure of the Bellman equation that we

derived earlier in discrete time. However, let us now go a step further by

thinking of ∆t as a short interval of time and approximate the first integral as

U(ct, xt) ∆t. Also, expand J(xt+∆t, t + ∆t) around the points xt and t in a

Taylor series to get
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J(xt, t) = max
{c}

Et [U(ct, xt) ∆t + J(xt, t) + Jx∆x + Jt∆t (12.9)

+
1

2
Jxx(∆x)2 + Jxt(∆x)(∆t) +

1

2
Jtt(∆t)

2 + o(∆t)

]

where o (∆t) represents higher-order terms, say, y (∆t), where lim
∆t→0

y(∆t)
∆t = 0.

Based on our results from Chapter 8, the state variable’s diffusion process (12.6)

can be approximated as

∆x ≈ a(x, c)∆t + b(x, c)∆z + o(∆t) (12.10)

where ∆z =
√

∆tε̃ and ε̃ ∼ N (0, 1). Substituting (12.10) into (12.9), and

subtracting J(xt, t) from both sides, one obtains

0 = max
{c}

Et [U(ct, xt)∆t + ∆J + o(∆t)] (12.11)

where

∆J =

[
Jt + Jxa +

1

2
Jxxb

2

]
∆t + Jxb∆z (12.12)

Equation (12.12) is just a discrete-time version of Itô’s lemma. Next, note

that in equation (12.11) the term Et [Jxb∆z] = 0 and then divide both sides of

(12.11) by ∆t. Finally, take the limit as ∆t→ 0 to obtain

0 = max
{c}

[
U(ct, xt) + Jt + Jxa +

1

2
Jxxb

2

]
(12.13)

which is the stochastic, continuous-time Bellman equation analogous to the

discrete time Bellman equation (5.15). Equation (12.13) is sometimes rewritten

as

0 = max
{c}

[U(ct, xt) + L[J ] ] (12.14)
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where L[·] is the Dynkin operator. This operator is the “drift”term (expected

change per unit time) in dJ(x, t) that one obtains by applying Itô’s lemma to

J(x, t). In summary, equation (12.14) gives us a condition that the optimal

stochastic control policy, ct, must satisfy. Let us now return to the complete

consumption and portfolio choice problem and apply this solution technique.

12.3 Solving the Continuous-Time Problem

Define the indirect utility-of-wealth function, J(W, x, t), as

J(W,x, t) = max
Cs,{ωi,s},∀s,i

Et

[∫ T

t

U(Cs, s) ds + B(WT , T )

]
(12.15)

and define L as the Dynkin operator with respect to the state variables W and

xi, i = 1, . . . , k. In other words,

L [J ] =
∂J

∂t
+

[
n∑
i=1

ωi(µi − r)W + (rW − C)

]
∂J

∂W
+

k∑
i=1

ai
∂J

∂xi

+
1

2

n∑
i=1

n∑
j=1

σijωiωjW
2 ∂

2J

∂W 2
+

1

2

k∑
i=1

k∑
j=1

bij
∂2J

∂xi ∂xj

+

k∑
j=1

n∑
i=1

Wωiφij
∂2J

∂W∂xj
(12.16)

Thus, using equation (12.14), we have

0 = max
Ct,{ωi,t}

[U(Ct, t) + L[J ]] (12.17)

Given the concavity of U and B, equation (12.17) implies that the optimal

choices of Ct and ωi,t satisfy the conditions we obtain from differentiating

U(Ct, t) + L[J ] and setting the result equal to zero. Hence, the first-order
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conditions are

0 =
∂U (C∗, t)

∂C
− ∂J (W,x, t)

∂W
(12.18)

0 = W
∂J

∂W
(µi − r) +W 2 ∂2J

∂W 2

n∑
j=1

σijω
∗
j + W

k∑
j=1

φij
∂2J

∂xj ∂W
, i = 1, . . . , n

(12.19)

Equation (12.18) is the envelope condition that we earlier derived in a discrete-

time framework as equation (5.19), while equation (12.19) has the discrete-time

analog (5.20). Defining the inverse marginal utility function as G = [∂U/∂C]
−1,

condition (12.18) can be rewritten as

C∗ = G (JW , t) (12.20)

where we write JW as shorthand for ∂J/∂W . Also, the n linear equations

in (12.19) can be solved in terms of the optimal portfolio weights. Denote

Ω ≡ [σij ] to be the n× n instantaneous covariance matrix whose i, jth element

is σij , and denote the i, jth element of the inverse of Ω to be νij ; that is, Ω−1 ≡

[νij ]. Then the solution to (12.19) can be written as

ω∗i = − JW
JWWW

n∑
j=1

νij(µj−r)−
k∑

m=1

n∑
j=1

JWxm

JWWW
φjmνij , i = 1, . . . , n (12.21)

Note that the optimal portfolio weights in (12.21) depend on −JW / (JWWW )

which is the inverse of relative risk aversion for lifetime utility of wealth.

Given particular functional forms for U and the µi’s, σij’s, and φij’s, equa-

tions (12.20) and (12.21) are functions of the state variables W , x, and deriv-

atives of J , that is, JW , JWW , and JWxi . They can be substituted back into

equation (12.17) to obtain a nonlinear partial differential equation (PDE) for

J . For some specifications of utility and the processes for asset returns and the

state variables, this PDE can be solved to obtain an analytic expression for J
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that, in turn, allows for explicit solutions for C∗ and the ω∗i based on (12.20)

and (12.21). Examples of such analytical solutions are given in the next two

sections. In general, however, one must resort to numerical solutions for J and,

therefore, C∗ and the ω∗i .
4

12.3.1 Constant Investment Opportunities

Let us consider the special case for which asset prices or returns are lognormally

distributed, so that continuously compounded rates of return are normally dis-

tributed. This occurs when all of the µi’s (including r) and σi’s are constants.
5

This means that each asset’s expected rate of return and variance of its rate of

return do not change; there is a constant investment opportunity set. Hence,

investment and portfolio choice decisions are independent of the state variables,

x, since they do not affect U , B, the µi’s, or the σi’s. The only state variable

affecting consumption and portfolio choice decisions is wealth, W . This simpli-

fies the above analysis, since now the indirect utility function J depends only

on W and t, but not x.

For this constant investment opportunity set case, the optimal portfolio

weights in (12.21) simplify to

ω∗i = − JW
JWWW

n∑
j=1

νij(µj − r), i = 1, . . . , n (12.22)

Plugging (12.20) and (12.22) back into the optimality equation (12.17), and

4Techniques for solving partial differential equations numerically are covered in Carrier and
Pearson (Carrier and Pearson 1976), Judd (Judd 1998), and Rogers and Talay (Rogers and
Talay 1997).

5Recall that if µi and σi are constants, then dSi/Si follows geometric Brownian motion and

Si (t) = Si (0) e(µi−
1
2
σ2i )t+σi(zi(t)−zi(0)) is lognormally distributed over any discrete period

since zi (t)−zi (0) ˜N (0, t). Therefore, the return on a unit initial investment over this period,

Si (t) /Si (0) = e(µi−
1
2
σ2i )t+σi(zi(t)−zi(0)), is also lognormally distributed. The continuously-

compounded rate of return, equal to ln [Si (t) /Si (0)] =
(
µi − 1

2
σ2
i

)
t + σi (zi (t)− zi (0)), is

normally distributed.
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using the fact that [νij ] ≡ Ω−1, we have

0 = U(G, t) + Jt + JW (rW−G) − J2
W

2JWW

n∑
i=1

n∑
j=1

νij(µi−r)(µj−r) (12.23)

The nonlinear partial differential equation (12.23) may not have an analytic

solution for an arbitrary utility function, U . However, we can still draw some

conclusions about the individual’s investment behavior by looking at equation

(12.22). This expression for the individual’s optimal portfolio weights has

an interesting implication, but one that might be intuitive given a constant

investment opportunity set. Since νij , µj , and r are constants, the proportion

of each risky asset that is optimally held will be proportional to −JW /(JWWW ),

which depends only on the total wealth state variable, W . Thus, the proportion

of wealth in risky asset i to risky asset k is a constant; that is,

ω∗i
ω∗k

=

n∑
j=1

νij(µj − r)

n∑
j=1

νkj(µj − r)
(12.24)

and the proportion of risky asset k to all risky assets is

δk =
ω∗k∑n
i=1 ω

∗
i

=

n∑
j=1

νkj(µj − r)

n∑
i=1

n∑
j=1

νij(µj − r)
(12.25)

This means that each individual, no matter what her utility function, allocates

her portfolio between the risk-free asset, paying return r, and a portfolio of

the risky assets that holds the n risky assets in constant proportions, given by

(12.25). Hence, two “mutual funds,”one holding only the risk-free asset and the

other holding a risky-asset portfolio with the weights in (12.25) would satisfy all
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investors. Only the investor’s preferences; current level of wealth, Wt; and the

investor’s time horizon determine the amounts allocated to the risk-free fund

and the risky one.

The implication is that with a constant investment opportunity set, one can

think of the investment decision as being just a two-asset decision, where the

choice is between the risk-free asset paying rate of return r and a risky asset

having expected rate of return µ and variance σ2 where

µ ≡
n∑
i=1

δiµi

σ2 ≡
n∑
i=1

n∑
j=1

δiδjσij

(12.26)

These results are reminiscent of those derived from the single-period mean-

variance analysis of Chapter 2. In fact, the relative asset proportions given in

(12.24) and (12.25) are exactly the same as those implied by the single-period

mean-variance portfolio proportions given in equation (2.42).6 The instan-

taneous means and covariances for the continuous-time asset price processes

simply replace the previous means and covariances of the single-period multi-

variate normal asset returns distribution. Again, we can interpret all investors

as choosing along an effi cient frontier, where the tangency portfolio is given by

the weights in (12.25). But what is different in this continuous-time analysis is

the assumption regarding the distribution in asset prices. In the discrete-time

mean-variance analysis, we needed to assume that asset returns were normally

distributed, whereas in the continuous-time context we specified that asset re-

turns were lognormally distributed. This latter assumption is more attractive

6Note that the ith element of (2.42) can be written as w∗i = λ
∑n
j=1 νij

(
Rj −Rf

)
, which

equals (12.22) when λ = −JW / (JWWW ).
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since most assets, like bonds and common stocks, have limited liability so that

their values cannot become negative. The assumption of a lognormal return

distribution embodies this restriction, whereas the assumption of normality does

not.

The intuition for why we obtain the single-period Markowitz results in a

continuous-time setting with lognormally distributed asset returns is as follows.

By allowing continuous rebalancing, an individual’s portfolio choice horizon is

essentially a very short one; that, is the "period" is instantaneous. Since dif-

fusion processes can be thought of as being instantaneously (locally) normally

distributed, our continuous-time environment is as if the individual faces an

infinite sequence of similar short portfolio selection periods with normally dis-

tributed asset returns.

Let’s now look at a special case of the preceding general solution. Specifi-

cally, we assume that utility is of the hyperbolic absolute risk aversion (HARA)

class.

HARA Utility

Recall from Chapter 1 that HARA utility functions are defined by

U(C, t) = e−ρt
1− γ
γ

(
αC

1− γ + β

)γ
(12.27)

and that this class of utility nests power (constant relative-risk-aversion), ex-

ponential (constant absolute risk aversion), and quadratic utility. Robert C.

Merton (Merton 1971) derived explicit solutions for this class of utility functions.

With HARA utility, optimal consumption given in equation (12.20) becomes

C∗ =
1− γ
α

[
eρtJW
α

] 1
γ−1

− (1− γ)β

α
(12.28)
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and using (12.22) and (12.26), the proportion put in the risky-asset portfolio is

ω∗ = − JW
JWWW

µ− r
σ2

(12.29)

This solution is incomplete since C∗ and ω∗ are in terms of JW and JWW .

However, we solve for J in the following manner. Substitute (12.28) and (12.29)

into the optimality equation (12.17) or, alternatively, directly simplify equation

(12.23) to obtain

0 =
(1− γ)2

γ
e−ρt

[
eρtJW
α

] γ
γ−1

+ Jt (12.30)

+

(
(1− γ)β

α
+ rW

)
JW − J2

W

JWW

(µ− r)2

2σ2

This is the partial differential equation for J that can be solved subject to

a boundary condition for J(W, T ). Let us assume a zero bequest function,

B ≡ 0, so that the appropriate boundary condition is J(W, T ) = 0. The

nonlinear partial differential equation in (12.30) can be simplified by a change

in variable Y = J
γ
γ−1 . This puts it in the form of a Bernoulli-type equation and

an analytic solution exists. The expression for the general solution is lengthy

and can be found in (Merton 1971). Given this solution for J , one can then

calculate JW to solve for C∗ and also calculate JWW to solve for ω∗. It is

interesting to note that for this class of HARA utility, C∗ is of the form

C∗t = aWt + b (12.31)

and

ω∗t = g +
h

Wt
(12.32)



12.3. SOLVING THE CONTINUOUS-TIME PROBLEM 345

where a, b, g, and h are, at most, functions of time. For the special case of

constant relative risk aversion where U (C, t) = e−ρtCγ/γ, the solution is

J (W, t) = e−ρt
[

1− e−a(T−t)

a

]1−γ

W γ/γ (12.33)

C∗t =
a

1− e−a(T−t)Wt (12.34)

and

ω∗ =
µ− r

(1− γ)σ2
(12.35)

where a ≡ γ
1−γ

[
ρ
γ − r −

(µ−r)2
2(1−γ)σ2

]
. When the individual’s planning horizon is

infinite, that is, T →∞, a solution exists only if a > 0. In this case, we can see

that by taking the limits of equations (12.33) and (12.34) as T becomes infinite,

then J (W, t) = e−ρtaγ−1W γ/γ and consumption is a constant proportion of

wealth, C∗t = aWt.

As mentioned in the previous section, in a continuous-time environment

when investment opportunities are constant, we obtain the single-period Markowitz

result that an investor will optimally divide her portfolio between the risk-free

asset and the tangency portfolio of risky assets given by (12.26). However, this

does not imply that an investor with the same form of utility would choose the

same portfolio weight in this tangency portfolio for both the continuous-time

case and the discrete-time case. Indeed, the optimal portfolio choices can be

qualitatively different. In particular, the constant relative-risk-averse individ-

ual’s optimal portfolio weight (12.35) for the continuous-time case differs from

what this individual would choose in the discrete-time Markowitz environment.

As covered in an exercise at the end of Chapter 2, an individual with constant

relative risk aversion and facing normally distributed risky-asset returns would

choose to place his entire portfolio in the risk-free asset; that is, ω∗ = 0. The

reason is that constant relative-risk-aversion utility is not a defined, real-valued
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function when end-of-period wealth is zero or negative: marginal utility becomes

infinite as end-of-period wealth declines to zero. The implication is that such

an investor would avoid assets that have a positive probability of making total

end-of-period wealth nonpositive. Because risky assets with normally distrib-

uted returns have positive probability of having zero or negative values over a

discrete period of time, a constant relative-risk-averse individual who cannot re-

vise her portfolio continuously optimally chooses the corner solution where the

entire portfolio consists of the risk-free asset.7 In contrast, an interior portfolio

choice occurs in the continuous-time context where constant investment oppor-

tunities imply lognormally distributed returns and a zero bound on the value of

risky assets.

A couple of final observations regarding the optimal risky-asset portfolio

holding (12.35) are, first, that it is decreasing in the individual’s coeffi cient

of relative risk aversion, (1− γ). This result is consistent with the received

wisdom of financial planners that more risk-averse individuals should choose a

smaller portfolio allocation in risky assets. However, the second observation

is that this risky-asset allocation is independent of the time horizon, T , which

runs counter to the conventional advice that individuals should reduce their

allocations in risky assets (stocks) as they approach retirement. An extension

of the portfolio choice model that endows individuals with riskless labor income

whose present value declines as the individual approaches her retirement is one

way of producing the result that the individual should allocate a decreasing

proportion of her financial asset portfolio to risky assets.8 In this case, riskless

7This portfolio corner solution result extends to the multiperiod discrete-time environment
of Chapter 5. Note that this corner solution does not apply to constant absolute risk aversion
where marginal utility continues to be positive and finite even when wealth is nonpositive.
This is why portfolio choice models often assume that utility displays constant absolute risk
aversion if asset returns are normally distributed.

8Zvi Bodie, Robert Merton, and Paul Samuelson (Bodie, Merton, and Samuelson 1992) an-
alyze the effects of labor income on lifetime portfolio choices. John Campbell and Luis Viceira
(Campbell and Viceira 2002) provide a broader examination of lifetime portfolio allocation.
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human capital (the present value of labor income) is large when the individual

is young, and it substitutes for holding the risk-free asset in the individual’s

financial asset portfolio. As the individual ages, her riskless human capital

declines and is replaced by more of the riskless asset in her financial portfolio.

12.3.2 Changing Investment Opportunities

Next, let us generalize the individual’s consumption and portfolio choice problem

by considering the effects of changing investment opportunities. To keep the

analysis fairly simple, assume that there is a single state variable, x. That is,

let k = 1 so that x is a scalar. We also simplify the notation by writing its

process as

dx = a (x, t) dt+ b (x, t) dζ (12.36)

where b dζσi dzi = φi dt. This allows us to write the optimal portfolio weights

in (12.21) as

ω∗i = − JW
WJWW

n∑
j=1

υij
(
µj − r

)
− JWx

WJWW

n∑
j=1

υijφj , i = 1, . . . , n (12.37)

or, written in matrix form,

ω∗=
A

W
Ω−1 (µ− re) +

H

W
Ω−1φ (12.38)

where ω∗= (ω∗1...ω
∗
n)
′ is the n×1 vector of portfolio weights for the n risky assets;

µ = (µ1...µn)
′ is the n×1 vector of these assets’expected rates of return; e is an

n-dimensional vector of ones, φ = (φ1, ..., φn)′, A = − JW
JWW

, and H = − JWx

JWW
.

We will use bold type to denote vector or matrix variables, while regular type

is used for scalar variables.
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Note that A and H will, in general, differ from one individual to another,

depending on the form of the particular individual’s utility function and level

of wealth. Thus, unlike in the constant investment opportunity set case (where

JWx = H = 0), ω∗i /ω
∗
j is not the same for all investors, that is; a two mutual

fund theorem does not hold. However, with one state variable, x, a three fund

theorem does hold. Investors will be satisfied choosing between a fund holding

only the risk-free asset, a second fund of risky assets that provides optimal

instantaneous diversification, and a third fund composed of a portfolio of the

risky assets that has the maximum absolute correlation with the state variable,

x. The portfolio weights of the second fund are Ω−1 (µ− re) and are the

same ones representing the mean-variance effi cient tangency portfolio that were

derived for the case of constant investment opportunities. The portfolio weights

for the third fund are Ω−1φ. Note that these weights are of the same form as

equation (2.64), which are the hedging demands derived in Chapter 2’s cross-

hedging example. They are the coeffi cients from a regression (or projection)

of changes in the state variable on the returns of the risky assets A/W and

H/W , which depend on the individual’s preferences, then determine the relative

amounts that the individual invests in the second and third risky portfolios.

To gain more insight regarding the nature of the individual’s portfolio hold-

ings, recall the envelope condition JW = UC , which allows us to write JWW =

UCC∂C/∂W . Therefore, A can be rewritten as

A = − UC
UCC (∂C/∂W )

> 0 (12.39)

by the concavity of U . Also, since JWx = UCC∂C/∂x, we have

H = − ∂C/∂x

∂C/∂W
R 0 (12.40)
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Now the first vector of terms on the right-hand side of (12.38) represents the

usual demand functions for risky assets chosen by a single-period, mean-variance

utility maximizer. Since A is proportional to the reciprocal of the individual’s

absolute risk aversion, we see that the more risk averse the individual, the

smaller A is and the smaller in magnitude is the individual’s demand for any

risky asset.

The second vector of terms on the right-hand side of (12.38) captures the

individual’s desire to hedge against unfavorable shifts in investment opportuni-

ties that would reduce optimal consumption. An unfavorable shift is defined

as a change in x such that consumption falls for a given level of current wealth,

that is, an increase in x if ∂C/∂x < 0 and a decrease in x if ∂C/∂x > 0. For

example, suppose that Ω is a diagonal matrix, so that υij = 0 for i 6= j and

υii = 1/σii > 0, and also assume that φi 6= 0.9 Then, in this special case, the

hedging demand term for risky asset i in (12.38) simplifies to

Hυiiφi = − ∂C/∂x

∂C/∂W
υiiφi > 0 iff

∂C

∂x
φi < 0 (12.41)

Condition (12.41) says that if an increase in x leads to a decrease in optimal

consumption (∂C/∂x < 0) and if x and asset i are positively correlated (φi > 0),

then there is a positive hedging demand for asset i; that is, Hυiiφi > 0 and asset

i is held in greater amounts than what would be predicted based on a simple

single-period mean-variance analysis. The intuition for this result is that by

holding more of asset i, one hedges against a decline in future consumption

due to an unfavorable shift in x. If x increases, which would tend to decrease

consumption (∂C/∂x < 0), then asset i would tend to have a high return (φi >

0), which by augmenting wealth, W , helps neutralize the fall in consumption

(∂C/∂W > 0). Hence, the individual’s optimal portfolio holdings are designed

9Alternatively, assume Ω is nondiagonal but that φj = 0 for j 6= i.
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to reduce fluctuations in consumption over his planning horizon.

To take a concrete example, suppose that x is a state variable that positively

affects the expected rates of return on all assets, including the instantaneously

risk-free asset. One simple specification of this is r = x and µ = re+p = xe+p

where p is a vector of risk premia for the risky assets. Thus, an increase in the

risk-free rate r indicates an improvement in investment opportunities. Now

recall from Chapter 4’s equation (4.14) that in a simple certainty model with

constant relative-risk-aversion utility, the elasticity of intertemporal substitu-

tion is given by ε = 1/ (1− γ). When ε < 1, implying that γ < 0, it was shown

that an increase in the risk-free rate leads to greater current consumption be-

cause the income effect is greater than the substitution effect. This result is

consistent with equation (12.34) where, for the infinite horizon case of T →∞,

we have Ct = γ
1−γ

[
ρ
γ − r −

(µ−r)2
2(1−γ)σ2

]
Wt = γ

1−γ

[
ρ
γ − r −

(∑n

i=1
δipi

)2
2(1−γ)σ2

]
Wt, so

that ∂Ct/∂r = −γWt/ (1− γ).10 Given empirical evidence that risk aversion is

greater than log (γ < 0), the intuition from these simple models would be that

∂Ct/∂r > 0 and is increasing in risk aversion.

From equation (12.41) we have

Hυiiφi = − ∂C/∂r

∂C/∂W
υiiφi > 0 iff

∂C

∂r
φi < 0 (12.42)

Thus, there is a positive hedging demand for an asset that is negatively corre-

lated with changes in the interest rate, r. An obvious candidate asset would

be a bond with a finite time until maturity. For example, if the interest rate

followed Vasicek’s Ornstein-Uhlenbeck process (Vasicek 1977) given in equation

(9.30) of Chapter 9, then any finite-maturity bond whose price process satis-

10Technically, it is not valid to infer the derivative ∂C/∂r from the constant investment op-
portunities model where we derived optimal consumption assuming r was constant. However,
as we shall see from an example later in this chapter, a similar result holds when we solve for
optimal consumption using a model where investment opportunities are explicitly changing.
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fied equations (9.31) and (9.44) would be perfectly negatively correlated with

changes in r. Thus, bonds would be a hedge against adverse changes in in-

vestment opportunities since they would experience a positive return when r

declines. Moreover, the greater an investor’s risk aversion, the greater would

be the hedging demand for bonds.

This insight may explain the Asset Allocation Puzzle described by Niko Can-

ner, N. Gregory Mankiw, and David Weil (Canner, Mankiw, and Weil 1997).

The puzzle relates to the choice of allocating one’s portfolio among three asset

classes: stocks, bonds, and cash (where cash refers to a short-maturity money

market investment). The conventional wisdom of financial planners is to rec-

ommend that an investor hold a lower proportion of her portfolio in stocks and

higher proportions in bonds and cash the more risk averse she is. If we consider

cash to be the (instantaneous-maturity) risk-free investment paying the return

of r, while bonds and stocks are each risky investments, Canner, Mankiw, and

Weil point out that this advice is inconsistent with Markowitz’s Two-Fund Sep-

aration Theorem discussed in Chapter 2. While Markowitz’s theory implies

that more risk-averse individuals should hold more cash, it also implies that

the optimal risky-asset portfolio (tangency portfolio) should be the same for

all investors, so that investors’ ratio of risky bonds to risky stocks should be

identical irrespective of their risk aversions. Therefore, Canner, Mankiw, and

Weil conclude that it is puzzling that financial planners recommend a greater

bonds-to-stocks mix for more risk-averse investors.

However, based on our previous analysis, specifically equation (12.42), we

see that financial planners’advice is consistent with employing bonds as a hedge

against changing investment opportunities and that the demand for this hedge

increases with an investor’s risk aversion. Hence, while the conventional wis-

dom is inconsistent with static, single-period portfolio rules, it is predicted by



352 CHAPTER 12. CONTINUOUS TIME PORTFOLIO CHOICE

Merton’s more sophisticated intertemporal portfolio rules.11 One caveat with

this explanation of the puzzle is that the Merton theory assumes that changing

investment opportunities represent real, rather than nominal, variation in as-

set return distributions. If so, the optimal hedging instrument may be a real

(inflation-indexed) bond. In contrast, the asset allocation advice of financial

practitioners tends to be in terms of nominal (currency-denominated) bonds.

Still, if nominal bond price movements result primarily from changes in real

interest rates, rather than expected inflation, then in the absence of indexed

bonds, nominal bonds may be the best available hedge against changes in real

rates.12

The Special Case of Logarithmic Utility

Let us continue to assume that there is a single state variable affecting in-

vestment opportunities but now also specify that the individual has logarith-

mic utility and a logarithmic bequest function, so that in equation (12.15),

U(Cs, s) = e−ρs ln (Cs) and B (WT , T ) = e−ρT ln (WT ). Logarithmic utility is

one of the few cases in which analytical solutions for consumption and portfo-

lio choices can be obtained when investment opportunities are changing. To

derive the solution to (12.17) for log utility, let us consider a trial solution for

the indirect utility function of the form J (W,x, t) = d (t)U (Wt, t) + F (x, t) =

d (t) e−ρt ln (Wt) + F (x, t). Then optimal consumption in (12.20) would be

C∗t =
Wt

d (t)
(12.43)

11 Isabelle Bajeux-Besnainou, James Jordan, and Roland Portait (Bajeux-Besnainou, Jor-
dan, and Portait 2001) were among the first to resolve this asset allocation puzzle based on
Merton’s intertemporal portfolio theory.
12 In 1997, the year the Canner, Mankiw, and Weil article was published, the United States

Treasury began issuing inflation-indexed bonds called Treasury Inflation-Protected Securities
(TIPS). Prior to this date, nominal bonds may have been feasible hedges against changing
real returns. See research by Michael Brennan and Yihong Xia (Brennan and Xia 2002) and
Chapter 3 of the book by John Campbell and Luis Viceira (Campbell and Viceira 2002).
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and the first-order conditions for the portfolio weights in (12.37) simplify to

ω∗i =

n∑
j=1

υij
(
µj − r

)
(12.44)

since JWx = 0. Substituting these conditions into the Bellman equation (12.17),

it becomes

0 = U (C∗t , t) + Jt + JW [rWt − C∗t ] + a (x, t) Jx

+
1

2
b (x, t)

2
Jxx −

J2
W

2JWW

n∑
i=1

n∑
j=1

υij
(
µj − r

)
(µi − r)

= e−ρt ln

[
Wt

d (t)

]
+ e−ρt

[
∂d (t)

∂t
− ρd (t)

]
ln [Wt] + Ft + e−ρtd (t) r − e−ρt

+a (x, t)Fx +
1

2
b (x, t)

2
Fxx +

d (t) e−ρt

2

n∑
i=1

n∑
j=1

υij
(
µj − r

)
(µi − r)

(12.45)

or

0 = − ln [d (t)] +

[
1 +

∂d (t)

∂t
− ρd (t)

]
ln [Wt] + eρtFt + d (t) r − 1

+a (x, t) eρtFx +
1

2
b (x, t)

2
eρtFxx +

d (t)

2

n∑
i=1

n∑
j=1

υij
(
µj − r

)
(µi − r)

(12.46)

Note that a solution to this equation must hold for all values of wealth. Hence,

it must be the case that

∂d (t)

∂t
− ρd (t) + 1 = 0 (12.47)
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subject to the boundary condition d (T ) = 1. The solution to this first-order

ordinary differential equation is

d (t) =
1

ρ

[
1− (1− ρ) e−ρ(T−t)

]
(12.48)

The complete solution to (12.46) is then to solve

0 = − ln [d (t)] + eρtFt + d (t) r − 1 + a (x, t) eρtFx (12.49)

+
1

2
b (x, t)

2
eρtFxx +

d (t)

2

n∑
i=1

n∑
j=1

υij
(
µj − r

)
(µi − r)

subject to the boundary condition F (x, T ) = 0 and where (12.48) is substituted

in for d (t). The solution to (12.49) depends on how r, the µi’s, and Ω are

assumed to depend on the state variable x. However, whatever assumptions

are made regarding these variables’relationships to the state variable x, they

will influence only the level of indirect utility via the value of F (x, t) and will

not change the form of the optimal consumption and portfolio rules. Thus, this

verifies that our trial solution is, indeed, a valid form for the solution to the

individual’s problem. Substituting (12.48) into (12.43), consumption satisfies

Ct =
ρ

1− (1− ρ) e−ρ(T−t)
Wt (12.50)

which is the continuous-time counterpart to the log utility investor’s optimal

consumption that we derived for the discrete-time problem in Chapter 5, equa-

tion (5.33). Note also that the log utility investor’s optimal portfolio weights

given in (12.44) are of the same form as in the case of a constant investment

opportunity set, equation (12.35) with γ = 0. Similar to the discrete-time case,

the log utility investor may be described as behaving myopically in that she has
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no desire to hedge against changes in investment opportunities.13 However,

note that even with log utility, a difference from the constant investment op-

portunity set case is that since r, the µi’s, and Ω depend, in general, on the

constantly changing state variable xt, the portfolio weights in equation (12.44)

vary over time.

Recall that log utility is a very special case and, in general, other utility spec-

ifications lead to consumption and portfolio choices that reflect desires to hedge

against investment opportunities. An example is given in the next section.

After introducing an alternative solution technique, we solve for the consump-

tion and portfolio choices of an individual with general power utility who faces

changing investment opportunities.

12.4 The Martingale Approach to Consumption

and Portfolio Choice

The preceding sections of this chapter showed how stochastic dynamic program-

ming could be used to find an individual’s optimal consumption and portfolio

choices. An alternative to this dynamic programming method was developed

by John Cox and Chi-Fu Huang (Cox and Huang 1989), Ioannis Karatzas, John

Lehoczky, and Steven Shreve (Karatzas, Lehoczky, and Shreve 1987), and Stan-

ley Pliska (Pliska 1986). Their solution technique uses a stochastic discount

factor (state price deflator, or pricing kernel) for valuation, and so it is most

applicable to an environment characterized by dynamically complete markets.14

13The portfolio weights for the discrete time case are given by (5.34). As discussed earlier,
the log utility investor acts myopically because income and substitution effects from changing
investment opportunities exactly cancel for this individual.
14Hua He and Neil Pearson (He and Pearson 1991) have extended this martingale approach

to an incomplete markets environment. Although in this case there exists an infinity of
possible stochastic discount factors, their solution technique chooses what is referred to as a
"minimax" martingale measure. This leads to a pricing kernel such that agents do not wish
to hedge against the "unhedgeable" uncertainty.
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Recall that Chapter 10 demonstrated that when markets are complete, the ab-

sence of arbitrage ensures the existence of a unique positive stochastic discount

factor. Therefore, let us start by considering the necessary assumptions for

market completeness.

12.4.1 Market Completeness Assumptions

As before, let there be n risky assets and a risk-free asset that has an instan-

taneous return r (t). We modify the previous risky-asset return specification

(12.1) to write the return on risky i as

dSi/Si = µidt+ ΣidZ, i = 1, ..., n (12.51)

where Σi = (σi1...σin) is a 1 × n vector of volatility components and dZ =

(dz1...dzn)
′ is an n ×1 vector of independent Brownian motions.15 The scalar

µi, the elements of Σi, and r (t) may be functions of state variables driven by

the Brownian motion elements of dZ. Further, we assume that the n risky

assets are nonredundant in the sense that their instantaneous covariance matrix

is nonsingular. Specifically, if we let Σ be the n×n matrix whose ith row equals

Σi, then the instantaneous covariance matrix of the assets’returns, Ω ≡ ΣΣ′,

has rank equal to n.

Importantly, we are assuming that any uncertain changes in the means and

covariances of the asset return processes in (12.51) are driven only by the vector

dZ. This implies that changes in investment opportunities can be perfectly

15Note that in (12.51), the independent Brownian motion components of dZ, dzi, i = 1, ..., n
are different from the possibly correlated Brownian motion processes dzi defined in (12.1).
Accordingly, the return on asset i in (12.51) depends on all n of the independent Brownian
motion processes, while the return on asset i in (12.1) depends on only one of the correlated
Brownian motion processes, namely, the ith one, dzi. These different ways of writing the
risky-asset returns are not important, because an orthogonal transformation of the n correlated
Brownian motion processes in (12.1) can allow us to write asset returns as (12.51) where each
asset return depends on all n independent processes. The reason for writing asset returns as
(12.51) is that individual market prices of risk can be identified with each of the independent
risk sources.
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hedged by the n assets, and such an assumption makes this market dynamically

complete. This differs from the assumptions of (12.1) and (12.2), because we

exclude state variables driven by other, arbitrary Brownian motion processes,

dζi, that cannot be perfectly hedged by the n assets’returns. Equivalently, if

we assume there is a state variable affecting asset returns, say, xi as represented

in (12.2), then its Brownian motion process, dζi, must be a linear function of

the Brownian motion components of dZ. Hence, in this section there can be

no more than n (not n+ k) sources of uncertainty affecting the distribution of

asset returns.

Given this structure, we showed in Chapter 10 that when arbitrage is not

possible, a unique stochastic discount factor exists and follows the process

dM/M = −rdt−Θ (t)
′
dZ (12.52)

where Θ = (θ1...θn)
′ is an n× 1 vector of market prices of risks associated with

each Brownian motion and where Θ satisfies

µi − r = ΣiΘ, i = 1, ..., n (12.53)

Notice that if we take the form of the assets’ expected rates of return and

volatilities as given, then equation (12.53) is a system of n linear equations that

determine the n market prices of risk, Θ. Alternatively, if Θ and the assets’

volatilities are taken as given, (12.53) determines the assets’expected rates of

return.

12.4.2 The Optimal Consumption Plan

Now consider the individual’s original consumption and portfolio choice problem

in (12.4) and (12.3). A key to solving this problem is to view the individual’s
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optimally invested wealth as an asset (literally, a portfolio of assets) that pays a

continuous dividend equal to the individual’s consumption. This implies that

the return on wealth, equal to its change in value plus its dividend, can be priced

using the stochastic discount factor. The current value of wealth equals the

expected discounted value of the dividends (consumption) that it pays over the

individual’s planning horizon plus discounted terminal wealth.

Wt = Et

[∫ T

t

Ms

Mt
Csds+

MT

Mt
WT

]
(12.54)

Equation (12.54) can be interpreted as an intertemporal budget constraint. This

allows the individual’s choice of consumption and terminal wealth to be trans-

formed into a static, rather than dynamic, optimization problem. Specifically,

the individual’s problem can be written as the following Lagrange multiplier

problem:16

max
Cs∀s∈[t,T ],WT

Et

[∫ T

t

U (Cs, s) ds+B (WT , T )

]

+ λ

(
MtWt − Et

[∫ T

t

MsCsds+MTWT

])
(12.55)

Note that the problem in (12.55) does not explicitly address the portfolio choice

decision. This will be determined later by deriving the individual’s portfolio

trading strategy required to finance his optimal consumption plan.

By treating the integrals in (12.55) as summations over infinite points in

time, the first-order conditions for optimal consumption at each date and for

terminal wealth are derived as

16By specifying the individual’s optimal consumption problem as a static constrained opti-
mization, it is straightforward to incorporate additional constraints into the Lagrange multi-
plier problem. For example, some forms of HARA utility may permit negative consumption.
To prevent this, an additional constraint can be added to keep consumption non-negative.
For discussion of this issue, see Chapter 6 of Robert Merton’s book (Merton 1992).
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∂U (Cs, s)

∂Cs
= λMs, ∀s ∈ [t, T ] (12.56)

∂B (WT , T )

∂WT
= λMT (12.57)

Similar to what we did earlier, define the inverse marginal utility function as

G = [∂U/∂C]
−1 and the inverse marginal utility of bequest function as GB =

[∂B/∂W ]
−1. This allows us to rewrite these first-order conditions as

C∗s = G (λMs, s) , ∀s ∈ [t, T ] (12.58)

W ∗T = GB (λMT , T ) (12.59)

Except for the yet-to-be-determined Lagrange multiplier λ, equations (12.58)

and (12.59) provide solutions to the optimal choices of consumption and termi-

nal wealth. We can now solve for λ based on the condition that the discounted

optimal consumption path and terminal wealth must equal the individual’s ini-

tial endowment of wealth, Wt. Specifically, we substitute (12.58) and (12.59)

into (12.54) to obtain

Wt = Et

[∫ T

t

Ms

Mt
G (λMs, s) ds+

MT

Mt
GB (λMT , T )

]
(12.60)

Given the initial endowment of wealth, Wt, the distribution of the stochastic

discount factor based upon its process in (12.52), and the forms of the utility and

bequest functions (which determine G and GB), the expectation in equation

(12.60) can be calculated to determine λ as a function of Wt, Mt, and any

date t state variables. Moreover, there is an alternative way to solve for Wt

as a function of Mt, λ, and the date t state variables that may sometimes

be easier to compute than equation (12.60). As demonstrated in Chapter



360 CHAPTER 12. CONTINUOUS TIME PORTFOLIO CHOICE

10, since wealth represents an asset or contingent claim that pays a dividend

equal to consumption,Wt must satisfy a particular Black-Scholes-Merton partial

differential equation (PDE) similar to equation (10.7). The equivalence of the

stochastic discount factor relationship in (12.60) and this PDE solution was

shown to be a result of the assumptions of market completeness and an absence

of arbitrage.

To derive the PDE corresponding to (12.60), let us assume for simplicity

that there is a single state variable that affects the distribution of asset returns.

That is, µi, the elements of Σi, and r (t) may be functions of a single state

variable, say, xt. This state variable follows the process

dx = a (x, t) dt+ B (x, t)
′
dZ (12.61)

where B (x, t) = (B1...Bn)
′ is an n × 1 vector of volatilities multiplying the

Brownian motion components of dZ. Based on (12.60) and the fact that the

processes for Mt in (12.52) and xt in (12.61) are Markov processes, we know

that the date t value of optimally invested wealth is a function ofMt and xt and

the individual’s time horizon.17 Hence, by Itô’s lemma, the process followed

by W (Mt, xt, t) satisfies

dW = WMdM +Wxdx+
∂W

∂t
dt+

1

2
WMM (dM)

2

+WMx (dM) (dx) +
1

2
Wxx (dx)

2

= µW dt+ Σ′WdZ (12.62)

17This is because the expectation in (12.60) depends on the distribution of future values of
the pricing kernel. From (12.52) and (12.53), the distribution clearly depends on its initial
level, Mt, but also on r and Θ, which can vary with the state variable x.
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where

µW ≡ −rMWM + aWx +
∂W

∂t
+

1

2
Θ′ΘM2WMM −Θ′BMWMx +

1

2
B′BWxx

(12.63)

and

ΣW≡ −WMMΘ +WxB (12.64)

Following the arguments of Black and Scholes in Chapter 10, the expected

return on wealth must earn the instantaneous risk-free rate plus a risk premium,

where this risk premium equals the market prices of risk times the sensitivities

(volatilities) of wealth to these sources of risk. Specifically,

µW +G (λMt, t) = rWt + Σ′WΘ (12.65)

Wealth’s expected return, given by the left-hand side of (12.65), equals the

expected change in wealth plus its consumption dividend. Substituting in for

µW and Σ′W leads to the PDE

0 =
1

2
Θ′ΘM2WMM −Θ′BMWMx +

1

2
B′BWxx + (Θ′Θ− r)MWM

+ (a−B′Θ)Wx +
∂W

∂t
+G (λMt, t)− rW (12.66)

which is solved subject to the boundary condition that terminal wealth is opti-

mal given the bequest motive; that is,W (MT , xT , T ) = GB (λMT , T ). Because

this PDE is linear, as opposed to the nonlinear PDE for the indirect utility func-

tion, J (W,x, t), that results from the dynamic programming approach, it may

be relatively easy to solve, either analytically or numerically.

Thus, either equation (12.60) or (12.66) leads to the solutionW (Mt, xt, t;λ)

= Wt that allows us to determine λ as a function of Wt , Mt, and xt, and this
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solution for λ can then be substituted into (12.58) and (12.59). The result is

that consumption at any point in time and terminal wealth will depend only on

the contemporaneous value of the pricing kernel, that is, C∗s (Ms) andW ∗T (MT ).

Note that when the individual follows this optimal policy, it is time consistent in

the sense that should the individual resolve the optimal consumption problem

at some future date, say, s > t, the computed value of λ will be the same as

that derived at date t.

12.4.3 The Portfolio Allocation

Because we have assumed markets are dynamically complete, we know from the

results of Chapters 9 and 10 that the individual’s optimal process for wealth

and its consumption dividend can be replicated by trading in the economy’s

underlying assets. Thus, our final step is to derive the portfolio allocation

policy that finances the individual’s consumption and terminal wealth rules. We

can do this by comparing the process for wealth in (12.62) to the dynamics of

wealth where the portfolio weights in the n risky assets are explicitly represented.

Based on the assumed dynamics of asset returns in (12.51), equation (12.3) is

dW =

n∑
i=1

ωi(µi − r)W dt + (rW − Ct) dt + W

n∑
i=1

ωiΣidZ

= ω′ (µ− re)W dt + (rW − Ct) dt+Wω′ΣdZ (12.67)

where ω = (ω1...ωn)
′ is the n × 1 vector of portfolio weights for the n risky

assets and µ = (µ1...µn)
′ is the n × 1 vector of these assets’expected rates of

return. Equating the coeffi cients of the Brownian motion components of the

wealth processes in (12.67) and (12.62), we obtain Wω′Σ = Σ
′
W . Substituting
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in (12.64) for ΣW and rearranging results gives

ω = −MWM

W
Σ′
−1

Θ+
Wx

W
Σ′
−1

B (12.68)

Next, recall the no-arbitrage condition (12.53), and note that it can be written

in the following matrix form

µ− re = ΣΘ (12.69)

Using (12.69) to substitute for Θ, equation (12.68) becomes

ω = −MWM

W
Σ−1Σ′

−1
(µ− re) +

Wx

W
Σ′
−1

B

= −MWM

W
Ω−1 (µ− re) +

Wx

W
Σ′
−1

B (12.70)

These optimal portfolio weights are of the same form as what was derived earlier

in (12.38) for the case where the state variable is perfectly correlated with

asset returns.18 A comparison shows that MWM = JW /JWW and Wx =

−JWx/JWW . Thus, given the solution for W (M,x, t) in (12.60) or (12.66),

equation (12.70) represents a derivation of the individual’s optimal portfolio

choices that is an alternative to the dynamic programming approach. Let

us now use this martingale technique to solve a specific consumption-portfolio

choice problem.

12.4.4 An Example

An end-of-chapter exercise asks you to use the martingale approach to derive

the consumption and portfolio choices for the case of constant investment op-

portunities and constant relative-risk-aversion utility. As was shown earlier

18 In this case, Ω−1φ = Σ′−1B.
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using the Bellman equation approach, this leads to the consumption and port-

folio rules given by equations (12.34) and (12.35). In this section we consider

another example analyzed by Jessica Wachter (Wachter 2002) that incorporates

changing investment opportunities. A single state variable is assumed to affect

the expected rate of return on a risky asset and, to ensure market completeness,

this state variable is perfectly correlated with the risky asset’s returns. Specifi-

cally, let there be a risk-free asset paying a constant rate of return of r > 0, and

also assume there is a single risky asset so that equation (12.51) can be written

simply as

dS/S = µ (t) dt+ σdz (12.71)

The risky asset’s volatility, σ, is assumed to be a positive constant but the asset’s

drift is permitted to vary over time. Specifically, let the single market price of

risk be θ (t) = [µ (t)− r] /σ. It is assumed to follow the Ornstein-Uhlenbeck

process

dθ = a
(
θ − θ

)
dt− bdz (12.72)

where a, θ, and b are positive constants. Thus, the market price of risk is

perfectly negatively correlated with the risky asset’s return.19 Wachter justifies

the assumption of perfect negative correlation as being reasonable based on

empirical studies of stock returns. Since µ (t) = r + θ (t)σ and therefore dµ =

σdθ, this model implies that the expected rate of return on the risky asset is

mean-reverting, becoming lower (higher) after its realized return has been high

(low).20

The individual is assumed to have constant relative-risk-aversion utility and

a zero bequest function, so that (12.55) becomes

19Robert Merton (Merton 1971) considered a similar problem where the market price of
risk was perfectly positively correlated with a risky asset’s return.
20Straightforward algebra shows that µ (t) follows the similar Ornstein-Uhlenbeck process

dµ = a
(
θσ + r − µ

)
dt− σbdz.
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max
Cs∀s∈[t,T ]

Et

[∫ T

t

e−ρs
Cγ

γ
ds

]
+ λ

(
MtWt − Et

[∫ T

t

MsCsds

])
(12.73)

where we have used the fact that it is optimal to set terminal wealth to zero

in the absence of a bequest motive. The first-order condition corresponding to

(12.58) is then

C∗s = e−
ρs
1−γ (λMs)

− 1
1−γ , ∀s ∈ [t, T ] (12.74)

Therefore, the relationship between current wealth and this optimal consump-

tion policy, equation (12.60), is

Wt = Et

[∫ T

t

Ms

Mt
e−

ρs
1−γ (λMs)

− 1
1−γ ds

]
(12.75)

= λ−
1

1−γM−1
t

∫ T

t

e−
ρs
1−γEt

[
M
− γ
1−γ

s

]
ds

Since dM/M = −rdt− θdz, the expectation in (12.75) depends only on Mt and

the distribution of θ which follows the Ornstein-Uhlenbeck process in (12.72).

A solution for Wt can be obtained by computing the expectation in (12.75)

directly. Alternatively, one can solve for Wt using the PDE (12.66). For this

example, the PDE is

0 =
1

2
θ2M2WMM + θbMWMθ +

1

2
b2Wθθ +

(
θ2 − r

)
MWM

+
[
a
(
θ − θ

)
+ bθ

]
Wθ +

∂W

∂t
+ e−

ρt
1−γ (λMt)

− 1
1−γ − rW (12.76)

which is solved subject to the boundary condition W (MT , θT , T ) = 0 since it is

assumed there is no utility from leaving a bequest. Wachter discusses how the
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equations in (12.75) and (12.76) are similar to ones found in the literature on

the term structure of interest rates. When γ < 0, so that the individual has

risk aversion greater than that of a log utility maximizer, the solution is shown

to be21

Wt = (λMt)
− 1
1−γ e−

ρt
1−γ

∫ T−t

0

H (θt, τ) dτ (12.77)

where H (θt, τ) is the exponential of a quadratic function of θt given by

H (θt, τ) ≡ e
1

1−γ

[
A1(τ)

θ2t
2 +A2(τ)θt+A3(τ)

]
(12.78)

and

A1 (τ) ≡ 2c1 (1− e−c3τ )

2c3 − (c2 + c3) (1− e−c3τ )

A2 (τ) ≡
4c1aθ

(
1− e−c3τ/2

)2
c3 [2c3 − (c2 + c3) (1− e−c3τ )]

A3 (τ) ≡
∫ τ

0

[
b2

2 (1− γ)
A2

2 (s) +
b2

2
A1 (s) + aθA2 (s) + γr − ρ

]
ds

with c1 ≡ γ/ (1− γ), c2 ≡ −2 (a+ c1b), and c3 ≡
√
c22 − 4c1b2/ (1− γ). Equa-

tion (12.77) can be inverted to solve for the Lagrange multiplier, λ, but since

we know from (12.74) that (λMt)
− 1
1−γ e−

ρt
1−γ = C∗t , we can immediately rewrite

(12.77) to derive the optimal consumption rule as

C∗t =
Wt∫ T−t

0
H (θt, τ) dτ

(12.79)

The positive function H (θt, τ) can be given an economic interpretation. Recall

that wealth equals the value of consumption from now until T − t periods into

the future. Therefore, since
∫ T−t

0
H (θt, τ) dτ = Wt/C

∗
t , the function H (θt, τ)

equals the value of consumption τ periods in the future scaled by current con-

21This solution also requires c22 − 4c1b2/ (1− γ) > 0.
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sumption.

Wachter shows that when γ < 0 and θt > 0, so that the excess return on the

risky asset, µ (t)−r, is positive, then ∂ (C∗t /Wt) /∂θt > 0; that is, the individual

consumes a greater proportion of wealth the larger the excess rate of return on

the risky asset. This is what we would expect given our earlier analysis showing

that the "income" effect dominates the "substitution" effect when risk aversion

is greater than that of log utility. The higher expected rate of return on the risky

asset allows the individual to afford more current consumption, which outweighs

the desire to save more in order to take advantage of the higher expected return

on wealth.

Let us next solve for this individual’s optimal portfolio choice. The risky

asset’s portfolio weight that finances the optimal consumption plan is given by

(12.70) for the case of a single risky asset:

ω = −MWM

W

µ (t)− r
σ2

− Wθ

W

b

σ
(12.80)

Using (12.77), we see that −MWM/W = 1/ (1− γ). Moreover, it is straight-

forward to compute Wθ from (12.77), and by substituting these two derivatives

into (12.80) we obtain

ω =
µ (t)− r

(1− γ)σ2
− b

(1− γ)σ

∫ T−t
0

H (θt, τ) [A1 (τ) θt +A2 (τ)] dτ∫ T−t
0

H (θt, τ) dτ
(12.81)

=
µ (t)− r

(1− γ)σ2
− b

(1− γ)σ

∫ T−t

0

H (θt, τ)∫ T−t
0

H (θt, τ́) dτ́
[A1 (τ) θt +A2 (τ)] dτ

The first term is the familiar risky-asset demand whose form is the same as for

the case of constant investment opportunities, equation (12.35). The second

term on the right-hand side of (12.81) is the demand for hedging against chang-

ing investment opportunities. It can be interpreted as a consumption-weighted
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average of separate demands for hedging against changes in investment oppor-

tunities at all horizons from 0 to T − t periods in the future, where the weight

at horizon τ is H (θt, τ) /
∫ T−t

0
H (θt, τ́) dτ́ .

It can be shown that A1 (τ) and A2 (τ) are negative when γ < 0, so that

if θt > 0, the term [A1 (τ) θt +A2 (τ)] is unambiguously negative and, there-

fore, the hedging demand is positive. Hence, individuals who are more risk

averse than log utility place more of their wealth in the risky asset than would

be the case if investment opportunities were constant. Because of the nega-

tive correlation between risky-asset returns and future investment opportunities,

overweighting one’s portfolio in the risky asset means that unexpectedly good

returns today hedge against returns that are expected to be poorer tomorrow.

12.5 Summary

A continuous-time environment often makes the effects of asset return dynam-

ics on consumption and portfolio decisions more transparent. Interestingly,

when asset returns are assumed to be lognormally distributed so that invest-

ment opportunities are constant, the individual’s optimal portfolio weights are

similar in form to those of Chapter 2’s single-period mean-variance model that

assumed normally distributed asset returns. The fact that the mean-variance

optimal portfolio weights could be derived in a multiperiod model with lognor-

mal returns is an attractive result because lognormality is consistent with the

limited-liability characteristics of most securities such as bonds and common

stocks.

When assets’means and variances are time varying, so that investment op-

portunities are randomly changing, we found that portfolio allocation rules no

longer satisfy the simple mean-variance demands. For cases other than log
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utility, portfolio choices include additional demand components that reflect a

desire to hedge against unfavorable shifts in investment opportunities.

We presented two techniques for finding an individual’s optimal consumption

and portfolio decisions. The first is a continuous-time analog of the discrete-

time dynamic programming approach studied in Chapter 5. This approach

leads to a continuous-time Bellman equation, which in turn results in a partial

differential equation for the derived utility of wealth. Solving for the derived

utility of wealth allows one to then derive the individual’s optimal consump-

tion and portfolio choices at each point in time. The second is a martingale

solution technique based on the insight that an individual’s wealth represents

an asset portfolio that pays dividends in the form of a stream of consumption.

This permits valuation of the individual’s optimal consumption stream using

the economy’s stochastic discount factor. After deriving the optimal consump-

tion rule, one can then find the portfolio decisions that finance the individual’s

consumption plan.

This chapter’s analysis of an individual’s optimal consumption and portfo-

lio decisions provides the foundation for considering the equilibrium returns of

assets in a continuous-time economy. This is the topic that we address in the

next chapter.

12.6 Exercises

1. Consider the following consumption and portfolio choice problem. An

individual must choose between two different assets, a stock and a short

(instantaneous) maturity, default-free bond. In addition, the individual

faces a stochastic rate of inflation, that is, uncertain changes in the price

level (e.g., the Consumer Price Index). The price level (currency price of
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the consumption good) follows the process

dPt/Pt = πdt+ δdζ

The nominal (currency value) of the stock is given by St. This nominal

stock price satisfies

dSt/St = µdt+ σdz

The nominal (currency value) of the bond is given by Bt. It pays an

instantaneous nominal rate of return equal to i. Hence, its nominal price

satisfies

dBt/Bt = idt

Note that dζ and dz are standard Wiener processes with dζdz = ρdt. Also

assume π, δ, µ, σ, and i are all constants.

a. What processes do the real (consumption good value) rates of return on

the stock and the bond satisfy?

b. Let Ct be the individual’s date t real rate of consumption and ω be the

proportion of real wealth, Wt, that is invested in the stock. Give the

process followed by real wealth, Wt.

c. Assume that the individual solves the following problem:

max
C,ω

E0

∫ ∞
0

U (Ct, t) dt

subject to the real wealth dynamic budget constraint given in part (b).

Assuming U (Ct, t) is a concave utility function, solve for the individual’s

optimal choice of ω in terms of the indirect utility-of-wealth function.
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d. How does ω vary with ρ? What is the economic intuition for this compar-

ative static result?

2. Consider the individual’s intertemporal consumption and portfolio choice

problem for the case of a single risky asset and an instantaneously risk-free

asset. The individual maximizes expected lifetime utility of the form

E0

[∫ T

0

e−φtu (Ct) dt

]

The price of the risky asset, S, is assumed to follow the geometric Brown-

ian motion process

dS/S = µdt+ σdz

where µ and σ are constants. The instantaneously risk-free asset pays an

instantaneous rate of return of rt. Thus, an investment that takes the

form of continually reinvesting at this risk-free rate has a value (price),

Bt, that follows the process

dB/B = rtdt

where rt is assumed to change over time, following the Vasicek mean-

reverting process (Vasicek 1977)

drt = a [b− rt] dt+ sdζ

where dzdζ = ρdt.

a. Write down the intertemporal budget constraint for this problem.
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b. What are the two state variables for this consumption-portfolio choice

problem? Write down the stochastic, continuous-time Bellman equation

for this problem.

c. Take the first-order conditions for the optimal choices of consumption and

the demand for the risky asset.

d. Show how the demand for the risky asset can be written as two terms:

one term that would be present even if r were constant and another term

that exists due to changes in r (investment opportunities).

3. Consider the following resource allocation-portfolio choice problem faced

by a university. The university obtains “utility” (e.g., an enhanced rep-

utation for its students, faculty, and alumni) from carrying out research

and teaching in two different areas: the “arts”and the “sciences.”Let Ca

be the number of units of arts activities “consumed”at the university and

let Cs be the number of science activities consumed at the university. At

date 0, the university is assumed to maximize an expected utility function

of the form

E0

[∫ ∞
0

e−φtu (Ca(t), Cs(t)) dt

]
where u (Ca, Cs) is assumed to be increasing and strictly concave with

respect to the consumption levels. It is assumed that the cost (or price) of

consuming a unit of arts activity is fixed at one. In other words, in what

follows we express all values in terms of units of the arts activity, making

units of the arts activity the numeraire. Thus, consuming Ca units of the

arts activity always costs Ca. The cost (or price) of consuming one unit of

science activity at date t is given by S (t), implying that the university’s

expenditure on Cs units of science activities costs SCs. S (t) is assumed
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to follow the process

dS/S = αsdt+ σsdζ

where αs and σs may be functions of S.

The university is assumed to fund its consumption of arts and sciences

activities from its endowment. The value of its endowment is denoted Wt.

It can be invested in either a risk-free asset or a risky asset. The risk-free

asset pays a constant rate of return equal to r. The price of the risky asset

is denoted P and is assumed to follow the process

dP/P = µdt+ σdz

where µ and σ are constants and dzdζ = ρdt. Let ω denote the proportion

of the university’s endowment invested in the risky asset, and thus (1− ω)

is the proportion invested in the risk-free asset. The university’s problem

is then to maximize its expected utility by optimally selecting Ca, Cs, and

ω.

a. Write down the university’s intertemporal budget constraint, that is, the

dynamics for its endowment, Wt.

b. What are the two state variables for this problem? Define a “derived

utility of endowment” (wealth) function and write down the stochastic,

continuous-time Bellman equation for this problem.

c. Write down the first-order conditions for the optimal choices of Ca, Cs,

and ω.

d. Show how the demand for the risky asset can be written as two terms, a

standard (single-period) portfolio demand term and a hedging term.
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e. For the special case in which utility is given by u (Ca,Cs) = CθaC
β
s , solve

for the university’s optimal level of arts activity in terms of the level and

price of the science activity.

4. Consider an individual’s intertemporal consumption, labor, and portfolio

choice problem for the case of a risk-free asset and a single risky asset.

The individual maximizes expected lifetime utility of the form

E0

{∫ T

0

e−φtu (Ct, Lt) dt+B (WT )

}

where Ct is the individual’s consumption at date t and Lt is the amount of

labor effort that the individual exerts at date t. u (Ct, Lt) is assumed to

be an increasing concave function of Ct but a decreasing concave function

of Lt. The risk-free asset pays a constant rate of return equal to r per

unit time, and the price of the risky asset, S, satisfies the process

dS/S = µdt+ σdz

where µ and σ are constants. For each unit of labor effort exerted at date

t, the individual earns an instantaneous flow of labor income of Ltytdt.

The return to effort or wage rate, yt, is stochastic and follows the process

dy = µy (y) dt+ σy (y) dζ

where dzdζ = ρdt.

a. Letting ω be the proportion of wealth invested in the risky asset, write

down the intertemporal budget constraint for this problem.
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b. What are the state variables for this problem? Write down the stochastic,

continuous-time Bellman equation for this problem.

c. Take the first-order conditions with respect to each of the individual’s

decision variables.

d. Show how the demand for the risky asset can be written as two terms:

one term that would be present even if y were constant and another term

that exists due to changes in y.

e. If u (Ct, Lt) = γ ln [Ct] + β ln [Lt], solve for the optimal amount of labor

effort in terms of the optimal level of consumption.

5. Consider an individual’s intertemporal consumption and portfolio choice

problem for the case of two risky assets (with no risk-free asset). The

individual maximizes expected lifetime utility of the form

E0

{∫ ∞
0

e−φtu (Ct) dt

}

where Ct is the individual’s consumption at date t. The individual’s port-

folio can be invested in a stock whose price, S, follows the process

dS/S = µdt+ σdz

and a default-risky bond whose price, B, follows the process

dB = rBdt−Bdq
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where dq is a Poisson counting process defined as

dq =

{
1 if a default occurs
0 otherwise

The probability of a default occurring over time interval dt is λdt. µ, σ,

r, and λ are assumed to be constants. Note that the bond earns a rate of

return equal to r when it does not default, but when default occurs, the

total amount invested in the bond is lost; that is, the bond price goes to

zero, dB = −B. We also assume that if default occurs, a new default-risky

bond, following the same original bond price process given above, becomes

available, so that the individual can always allocate her wealth between

the stock and a default-risky bond.

a. Letting ω be the proportion of wealth invested in the stock, write down

the intertemporal budget constraint for this problem.

b. Write down the stochastic, continuous-time Bellman equation for this

problem. Hint: recall that the Dynkin operator, L [J ], reflects the drift

terms from applying Itô’s lemma to J . In this problem, these terms need

to include the expected change in J from jumps in wealth due to bond

default.

c. Take the first-order conditions with respect to each of the individual’s

decision variables.

d. Since this problem reflects constant investment opportunities, it can be

shown that when u (Ct) = cγ/γ, γ < 1, the derived utility-of-wealth func-

tion takes the form J (W, t) = ae−φtW γ/γ, where a is a positive constant.

For this constant relative-risk-aversion case, derive the conditions for op-

timal C and ω in terms of current wealth and the parameters of the asset
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price processes. Hint: an explicit formula for ω in terms of all of the other

parameters may not be possible because the condition is nonlinear in ω.

e. Maintaining the constant relative-risk-aversion assumption, what is the

optimal ω if λ = 0? Assuming the parameters are such that 0 < ω < 1 for

this case, how would a small increase in λ affect ω, the proportion of the

portfolio held in the stock?

6. Show that a log utility investor’s optimal consumption for the continuous

time problem, equation (12.50), is comparable to that of the discrete-time

problem, equation (5.33).

7. Use the martingale approach to consumption and portfolio choice to solve

the following problem. An individual can choose between a risk-free asset

paying the interest rate r and a single risky asset whose price satisfies the

geometric Brownian motion process

dS

S
= µdt+ σdz

where r, µ, and σ are constants. This individual’s lifetime utility function

is time separable, has no bequest function, and displays constant relative

risk aversion:

Et

[∫ T

t

e−ρs
Cγs
γ
ds

]

a. Assuming an absence of arbitrage, state the form of the market price of

risk, θ, in terms of the asset return parameters and write down the process

followed by the pricing kernel, dM/M . You need not give any derivations.
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b. Write down the individual’s consumption choice problem as a static maxi-

mization subject to a wealth constraint, where Wt is current wealth and λ

is the Lagrange multiplier for the wealth constraint. Derive the first-order

conditions for Cs ∀s ∈ [t, T ] and solve for the optimal Cs as a function of

λ and Ms.

c. Write down the valuation equation for current wealth, Wt, in terms of λ,

Mt, and an integral of expected functions of the future values of the pricing

kernel. Given the previous assumptions that the asset price parameters

are constants, derive the closed-form solution for this expectation.

d. From the answer in part (c), show that optimal consumption is of the form

C∗t =
a

1− e−a(T−t)Wt

where a is a function of r, ρ, γ, and θ.

e. Describe how you next would calculate the optimal portfolio proportion

invested in the risky asset, ω, given the results of parts (a) - (d).



Chapter 13

Equilibrium Asset Returns

This chapter considers the equilibrium pricing of assets for a continuous-time

economy when individuals have time-separable utility. It derives the Intertem-

poral Capital Asset Pricing Model (ICAPM) that was developed by Robert

Merton (Merton 1973a). One result of this model is to show that the standard

single-period CAPM holds for the special case in which investment opportuni-

ties are assumed to be constant over time. This is an important modification

of the CAPM, not only because the results are extended to a multiperiod en-

vironment but because the single-period model’s assumption of a normal asset

return distribution is replaced with a more attractive assumption of lognor-

mally distributed returns. Since assets such as stocks and bonds have limited

liability, the assumption of lognormal returns, which restricts asset values to be

nonnegative, is more realistic.

When investment opportunities are changing, the standard "single-beta"

CAPM no longer holds. Rather, a multibeta ICAPM is necessary for pricing

assets. The additional betas reflect priced sources of risk from additional state

variables that affect investment opportunities. However, as was shown by

379
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Douglas Breeden (Breeden 1979), the multibeta ICAPM can be collapsed into

a single "consumption" beta model, the so-called Consumption Capital Asset

Pricing Model (CCAPM). Thus, consistent with our consumption-based asset

pricing results in Chapter 4, the continuous-time, multifactor ICAPM can be

interpreted as a consumption-based asset pricing model.

The Merton ICAPM is not a fully general equilibrium analysis because it

takes the forms of the assets’return-generating processes as given. However,

as this chapter demonstrates, this assumption regarding asset returns can be

reconciled with the general equilibrium model of John Cox, Jonathan Ingersoll,

and Stephen Ross (CIR) (Cox, Ingersoll, and Ross 1985a). The CIR model

is an example of a production economy that specifies the available productive

technologies. These technologies are assumed to display constant returns to

scale and provide us with a model of asset supplies that is an alternative to

the Lucas endowment economy presented in Chapter 6. The CIR framework

is useful for determining the equilibrium prices of contingent claims. The final

section of this chapter gives an example of how the CIR model can be applied

to determine the prices of various maturity bonds that are assumed to be in

zero net supply.

13.1 An Intertemporal Capital Asset PricingModel

Merton’s ICAPM is based on the same assumptions made in the previous chap-

ter regarding individuals’consumption and portfolio choices. Individuals can

trade in a risk-free asset paying an instantaneous rate of return of r (t) and in n

risky assets, where the instantaneous rates of return for the risky assets satisfy

dSi(t) / Si(t) = µi (x, t) dt + σi (x, t) dzi (13.1)
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where i = 1, ..., n, and (σi dzi)(σj dzj) = σij dt. The risk-free return and the

means and standard deviations of the risky assets can be functions of time and

a k × 1 vector of state variables that follow the processes

dxi = ai (x, t) dt+ bi (x, t) dζi (13.2)

where i = 1, ..., k, and (bi dζi)(bj dζj) = bij dt and (σi dzi)(bj dζj) = φij dt.

Now we wish to consider what must be the equilibrium relationships between

the parameters of the asset return processes characterized by equations (13.1)

and (13.2). Let us start by analyzing the simplest case first, namely, when

investment opportunities are constant through time.

13.1.1 Constant Investment Opportunities

As shown in the previous chapter, when the risk-free rate and the parameters

of assets’return processes are constants (r and the µi’s, σi’s, and σij’s are all

constants), the asset price processes in (13.1) are geometric Brownian motions

and asset returns are lognormally distributed. In this case, the optimal port-

folio choices of all individuals lead them to choose the same portfolio of risky

assets. Individuals differ only in how they divide their total wealths between

this common risky-asset portfolio and the risk-free asset. For this common

risky-asset portfolio, it was shown in Chapter 12’s equation (12.25) that the

proportion of risky asset k to all risky assets is

δk =

n∑
j=1

νkj(µj − r)

n∑
i=1

n∑
j=1

νij(µj − r)
(13.3)

and in (12.26) that this portfolio’s mean and variance are given by
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µ ≡
n∑
i=1

δiµi

σ2 ≡
n∑
i=1

n∑
j=1

δiδjσij .

(13.4)

Similar to our derivation of the single-period CAPM, in equilibrium this

common risky-asset portfolio must be the market portfolio; that is, µ = µm and

σ2 = σ2
m. Moreover, the continuous-time market portfolio is exactly the same

as that implied by the single-period CAPM, where the instantaneous means

and covariances of the continuous-time asset return processes replace the means

and covariances of CAPM’s multivariate normal asset return distribution. This

implies that the equilibrium asset returns in this continuous-time environment

satisfy the same relationship as the single-period CAPM:

µi − r = βi (µm − r) , i = 1, . . ., n (13.5)

where βi ≡ σim/σ
2
m and σim is the covariance between the ith asset’s rate of

return and the market’s rate of return. Thus, the constant investment opportu-

nity set assumption replicates the standard, single-period CAPM. Yet, rather

than asset returns being normally distributed as in the single-period CAPM,

the ICAPM has asset returns being lognormally distributed.

While the standard CAPM results continue to hold for this more realistic

intertemporal environment, the assumptions of a constant risk-free rate and

unchanging asset return means and variances are untenable. Clearly, interest

rates vary over time, as do the volatilities of assets such as common stocks.1

Moreover, there is substantial evidence that mean returns on assets display

1Not only do nominal interest rates vary over time, but there is also evidence that real
interest rates do as well (Pennacchi 1991). Also, volatilities of stock returns have been found
to follow mean-reverting processes. See, for example, (Bollerslev, Chou, and Kroner 1992)
and (Andersen, Bollerslev, Diebold, and Ebens 2001).
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predictable time variation.2 Let us next analyze equilibrium asset pricing for

a model that permits such changing investment opportunities.

13.1.2 Stochastic Investment Opportunities

To keep the analysis simple, let us start by assuming that there is a single

state variable, x. The system of n equations that a given individual’s portfolio

weights satisfy is given by the previous chapter’s equation (12.19) with k = 1.

It can be rewritten as

0 = −A(µi − r) +

n∑
j=1

σijω
∗
jW −Hφi, i = 1, . . . , n (13.6)

where you may recall that A = −JW /JWW = −UC/ [UCC (∂C/∂W )] and H =

−JWx/JWW = − (∂C/∂x) / (∂C/∂W ). Let’s rewrite (13.6) in matrix form,

using bold type to denote vectors and matrices while using regular type to

indicate scalars. Also let the superscript p denote the pth individual’s (person’s)

value of wealth, vector of optimal portfolio weights, and values of A and H.

Then (13.6) becomes

Ap (µ− re) = ΩωpW p −Hpφ (13.7)

where µ = (µ1, ..., µn)′, e is an n-dimensional vector of ones, ωp = (ωp1, ..., ω
p
n)′

and φ = (φ1, ..., φn)′. Now if we sum across all individuals and divide both sides

by
∑
pA

p, we obtain

µ− re = aΩα− hφ (13.8)

2For example, empirical evidence by Narasimhan Jegadeesh and Sheridan Titman
(Jegadeesh and Titman 1993) find that abnormal stock returns appear to display positive
serial correlation at short horizons up to about a year, a phenomenon described as "momen-
tum." In contrast, there is some evidence (e.g., (Poterba and Summers 1988) and (Fama and
French 1988)) that abnormal stock returns are negatively serially correlated over longer-term
horizons.
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where a ≡
∑
pW

p/
∑
pA

p, h ≡
∑
pH

p/
∑
pA

p, and α ≡
∑
p ω

pW p/
∑
pW

p is

the average investment in each asset across investors. These must be the market

weights, in equilibrium. Hence, the ith row (ith risky-asset excess return) of

equation (13.8) is

µi − r = aσim − hφi (13.9)

To find the excess return on the market portfolio, we can pre-multiply (13.8) by

α′ and obtain

µm − r = aσ2
m − hσmx (13.10)

where σmx = α′φ is the covariance between the market portfolio and the state

variable, x. Next, define η ≡ Ω−1φ
e′Ω−1φ . By construction, η is a vector of

portfolio weights for the risky assets, where this portfolio has the maximum

absolute correlation with the state variable, x. In this sense, it provides the

best possible hedge against changes in the state variable.3 To find the excess

return on this optimal hedge portfolio, we can pre-multiply (13.8) by η′ and

obtain

µη − r = aσηm − hσηx (13.11)

where σηm is the covariance between the optimal hedge portfolio and the market

portfolio and σηx is the covariance between the optimal hedge portfolio and the

state variable, x. Equations (13.10) and (13.11) are two linear equations in the

two unknowns, a and h. Solving for a and h and substituting them back into

equation (13.9), we obtain:

3Note that the numerator of η, Ω−1φ, is the n× 1 vector of coeffi cients from a regression
of dx on the n risky-asset returns, dSi/Si, i− 1, ..., n. Dividing these individual coeffi cients
by their sum, e′Ω−1φ, transforms them into portfolio weights.
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µi − r =
σimσηx − φiσmη
σ2
mσηx − σmxσmη

(µm − r) +
φiσ

2
m − σimσmx

σ2
mσηx − σmxσmη

(
µη − r

)
(13.12)

While the derivation is somewhat lengthy, it can be shown that (13.12) is equiv-

alent to

µi − r =
σimσ

2
η − σiησmη

σ2
mσ

2
η − σ2

mη

(µm − r) +
σiησ

2
m − σimσmη

σ2
ησ

2
m − σ2

mη

(
µη − r

)
≡ βmi (µm − r) + βηi

(
µη − r

)
(13.13)

where σiη is the covariance between the return on asset i and that of the hedge

portfolio. Note that σiη = 0 if and only if φi = 0. For the case in which the

state variable, x, is uncorrelated with the market so that σmη = 0, equation

(13.13) simplifies to

µi − r =
σim
σ2
m

(µm − r) +
σiη
σ2
η

(
µη − r

)
(13.14)

In this case, the first term on the right-hand side of (13.14) is that found in

the standard CAPM. The assumption that x is uncorrelated with the market is

not as restrictive as one might first believe, since one could redefine the state

variable x as a factor that cannot be explained by current market returns, that

is, a factor that is uncorrelated with the market.

An equation such as (13.13) can be derived when more than one state variable

exists. In this case, there will be an additional “beta” for each state variable.

The intertemporal capital asset pricing relations (ICAPM) given by (13.13)

and (13.14) have a form similar to the Arbitrage Pricing Theory of Chapter 3.

Indeed, the multifactor ICAPM has been used to justify empirical APT-type

factor models. The ICAPM predicts that APT risk factors should be related
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to changes in investment opportunities. However, it should be noted that, in

general, the ICAPM’s betas may be time varying and not easy to estimate in a

constant-coeffi cients, multifactor regression model.

13.1.3 An Extension to State-Dependent Utility

It is possible that individuals’ utilities may be affected directly by the state

of the economy. Here we briefly mention the consequences of allowing the

state of nature, x, to influence utility by making it an argument of the utility

function, U (Ct, xt, t). It is straightforward to verify that the form of the

individual’s continuous-time Bellman equation (12.17), the first order conditions

for consumption, Ct, and the portfolio weights, the ωi’s, remain unchanged

from those specified in Chapter 12. Hence, our results on the equilibrium

returns on assets, equation (13.13), continue to hold. The only change is in

the interpretation of H, the individual’s hedging demand coeffi cient. With

state-dependent utility, by taking the total derivative of the envelope condition

(12.18), one obtains

JWx = UCC
∂C

∂x
+ UCx (13.15)

so that

H = − ∂C/∂x

∂C/∂W
− UCx

UCC
∂C
∂W

(13.16)

It can be shown that, in this case, individuals do not hold portfolios that min-

imize the variance of consumption. Rather, their portfolio holdings minimize

the variance of marginal utility.
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13.2 Breeden’s Consumption CAPM

Douglas T. Breeden (Breeden 1979) provided a way of simplifying the asset

return relationship given in Merton’s ICAPM. Breeden’s model shows that

Chapter 4’s single-period consumption-portfolio choice result that an asset’s

expected rate of return depends upon its covariance with the marginal utility

of consumption can be generalized to a multiperiod, continuous-time context.

Breeden considers the same model as Merton and hence, in the case of mul-

tiple state variables, derives equation (12.38). Substituting in for A and H,

equation (12.38) can be written in matrix form, and for the case of k (multiple)

state variables the optimal portfolio weights for the pth investor are given by

ωpW p = − UpC
UpCCC

p
W

Ω−1 (µ− re)−Ω−1ΦCp
x/C

p
W (13.17)

where CpW = ∂Cp/∂W p, Cp
x =

(
∂Cp

∂x1
...∂C

p

∂xk

)′
, and Φ is the n × k matrix of

covariances of asset returns with changes in the state variables; that is, its i,jth

element is φij . Pre-multiplying (13.17) by C
p
WΩ and rearranging terms, we have

− UpC
UpCC

(µ− re) = ΩWpCpW + ΦCp
x (13.18)

where ΩWp is the n × 1 vector of covariances between asset returns with the

change in wealth of individual p. Now individual p’s optimal consumption,

Cp (W p,x, t) is a function of wealth, W p; the vector of state variables, x; and

time, t. Thus, from Itô’s lemma, we know that the stochastic terms for dCp will

be

CpW (ωp1W
pσ1dz1 + ...+ ωpnW

pσndzn) + (b1dζ1 b2dζ2...bkdζk) Cp
x (13.19)
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Hence, the instantaneous covariances of asset returns with changes in individual

p’s consumption are given by calculating the instantaneous covariance between

each asset (having stochastic term σidzi) with the terms given in (13.19). The

result, in matrix form, is that the n × 1 vector of covariances between asset

returns and changes in the individual’s consumption, denoted ΩCp , is

ΩCp = ΩWpCpW+ΦCp
x (13.20)

Note that the right-hand side of (13.20) equals the right-hand side of (13.18),

and therefore

ΩCp =− UpC
UpCC

(µ− re) (13.21)

Equation (13.21) holds for each individual, p. Next, define C as aggregate

consumption per unit time and define T as an aggregate rate of risk tolerance,

where

T ≡
∑
p

− UpC
UpCC

(13.22)

Then (13.21) can be aggregated over all individuals to obtain

µ− re = T−1ΩC (13.23)

where ΩC is the n×1 vector of covariances between asset returns and changes in

aggregate consumption. If we multiply and divide the right-hand side of (13.23)

by current aggregate consumption, we obtain

µ− re = (T/C)
−1

Ωln C (13.24)

where Ωln C is the n×1 vector of covariances between asset returns and changes
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in the logarithm of consumption (percentage rates of change of consumption).

Consider a portfolio, m, with vector of weights ωm. Pre-multiplying (13.24)

by ωm′, we have

µm − r = (T/C)
−1
σm,lnC (13.25)

where µm is the expected return on portfolio m and σm,lnC is the (scalar) co-

variance between returns on portfolio m and changes in the log of consumption.

Using (13.25) to substitute for (T/C)
−1 in (13.24), we have

µ− re = (Ωln C/σm,lnC) (µm − r)

= (βC/βmC) (µm − r) (13.26)

where βC and βmC are the “consumption betas”of asset returns and of portfolio

m’s return. The consumption beta for any asset is defined as

βiC = cov (dSi/Si, d lnC) /var (d lnC) (13.27)

Portfolio m may be any portfolio of assets, not necessarily the market port-

folio. Equation (13.26) says that the ratio of expected excess returns on any

two assets or portfolios of assets is equal to the ratio of their betas measured

relative to aggregate consumption. Hence, the risk of a security’s return can

be summarized by a single consumption beta. Aggregate optimal consumption,

C (W,x, t), encompasses the effects of levels of wealth and the state variables

and in this way is a suffi cient statistic for the value of asset returns in different

states of the world.

Breeden’s consumption CAPM (CCAPM) is a considerable simplification

relative to Merton’s multibeta ICAPM. Furthermore, while the multiple state
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variables in Merton’s model may not be directly identified or observed, and hence

the multiple state variable “betas”may not be computed, Breeden’s consump-

tion beta can be computed given that we have data on aggregate consumption.

However, as discussed earlier, the results of empirical tests using aggregate con-

sumption data are unimpressive.4 As in all of our earlier asset pricing models

based on individuals’optimal consumption and portfolio choices, the CCAPM

and ICAPM rely on the assumption of time-separable utility. When we depart

from this restriction on utility, as we do in the next chapter, consumption-based

models are able to better describe empirical distributions of asset prices.

The ICAPM and CCAPM are not general equilibrium models in a strict

sense. While they model individuals’“tastes”by specifying the form of their

utilities, they do not link the asset return processes in (13.1) and (13.2) to

the economy’s “technologies.” A fully general equilibrium model would not

start by specifying these assets’return processes but, rather, by specifying the

economy’s physical production possibilities. In other words, it would specify

the economy’s productive opportunities that determine the supplies of assets in

the economy. By matching individuals’asset demands with the asset supplies,

the returns on assets would then be determined endogenously. The Lucas

endowment economy model in Chapter 6 was an example of this, and we now

turn to another general equilibrium model, namely, Cox, Ingersoll, and Ross’s

production economy model.

4An exception is research by Martin Lettau and Sydney Ludvigson (Lettau and Ludvigson
2001), who find that the CCAPM is successful in explaining stock returns when the model’s
parameters are permitted to vary over time with the log consumption-wealth ratio.
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13.3 A Cox, Ingersoll, and Ross Production Econ-

omy

In two companion articles (Cox, Ingersoll, and Ross 1985a);(Cox, Ingersoll, and

Ross 1985b), John Cox, Jonathan Ingersoll, and Stephen Ross (CIR) developed

a continuous-time model of a production economy that is a general equilib-

rium framework for many of the asset pricing results of this chapter. Their

model starts from basic assumptions regarding individuals’preferences and the

economy’s production possibilities. Individuals are assumed to have identical

preferences and initial wealth as well as to maximize standard, time-separable

utility similar to the lifetime utility previously specified in this and the previ-

ous chapter, namely, in (12.4).5 The unique feature of the CIR model is the

economy’s technologies.

Recall that in the general equilibrium endowment economy model of Robert

Lucas (Lucas 1978), technologies are assumed to produce perishable output

(dividends) that could not be reinvested, only consumed. In this sense, these

Lucas technologies are inelastically supplied. Individuals cannot save output

and physically reinvest it to increase the productive capacity of the economy.

Rather, in the Lucas economy, prices of the technologies adjust endogenously

to make investors’changing demands equal to the technologies’fixed supplies.

Given the technologies’distribution of future output (dividends), these prices

determine the technologies’equilibrium rates of return.

In contrast, the CIR production economy makes the opposite assumption

regarding the supply of technologies. Technologies are in perfectly elastic sup-

ply. Individuals can save some of the economy’s output and reinvest it, thereby

changing the productive capacity of the economy. Assets’rates of return are

5When individuals are assumed to have the same utility and initial wealth, we can think
of there being a “representative” individual.
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pinned down by the economy’s technologies’rates of return, and the amounts

invested in these technologies become endogenous.

Specifically, CIR assumes that there is a single good that can be either

consumed or invested. This “capital-consumption” good can be invested in

any of n different risky technologies that produce an instantaneous change in

the amount of the consumption good. If an amount ηi is physically invested in

technology i, then the proportional change in the amount of this good that is

produced is given by

dηi(t)

ηi (t)
= µi (x, t) dt + σi (x, t) dzi, i = 1, ..., n (13.28)

where (σi dzi)(σj dzj) = σij dt. µi is the instantaneous expected rate of change

in the amount of the invested good and σi is the instantaneous standard de-

viation of this rate of change. Note that because µi and σi are independent

of ηi, the change in the quantity of the good is linear in the amount invested.

Hence, each technology is characterized by “constant returns to scale.” µi and

σi can vary with time and with a k×1 vector of state variables, x(t). Thus, the

economy’s technologies for transforming consumption into more consumption

can reflect changing (physical) investment opportunities. The ith state variable

is assumed to follow the process

dxi = ai (x, t) dt+ bi (x, t) dζi (13.29)

where i = 1, ..., k, and (bi dζi)(bj dζj) = bij dt and (σi dzi)(bj dζj) = φij dt.

Note that equations (13.28) and (13.29) are nearly identical to our ear-

lier modeling of financial asset returns, equations (13.1) and (13.2). Whereas

dSi (t) /Si (t) in (13.1) represented a security’s proportional return, dηi (t) /ηi (t)

in (13.28) represents a physical investment’s proportional return. However, if
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each technology is interpreted as being owned by an individual firm, and each

of these firms is financed entirely by shareholders’equity, then the rate of re-

turn on shareholders’ equity of firm i, dSi (t) /Si (t), equals the proportional

change in the value of the firm’s physical assets (capital), dηi (t) /ηi (t). Here,

dSi (t) /Si (t) = dηi (t) /ηi (t) equals the instantaneous dividend yield where div-

idends come in the form of a physical capital-consumption good.

Like the Lucas endowment ecomony, we can think of the CIR production

economy as arising from a set of production processes that pay physical div-

idends. The difference is that the Lucas economy’s dividend is in the form

of a consumption-only good, whereas the CIR economy’s dividend is a capital-

consumption good that can be physically reinvested to expand the capacities

of the productive output processes. The CIR representative individuals must

decide how much of their wealth (the capital-consumption good) to consume

versus save and, of the amount saved, how to allocate it between the n different

technologies (or firms).

Because equations (13.28) and (13.29) model an economy’s production pos-

sibilities as constant returns-to-scale technologies, the distributions of assets’

rates of return available to investors are exogenous. In one sense, this situation

is not different from our earlier modeling of an investor’s optimal consumption

and portfolio choices. However, CIR’s specification allows one to solve for

the equilibrium prices of securities other than those represented by the n risky

technologies. This is done by imagining there to be other securities that have

zero net supplies. For example, there may be no technology that produces an

instantaneously risk-free return; that is, σi 6= 0 ∀ i. However, one can solve

for the equilibrium riskless borrowing or lending rate, call it r (t), for which

the representative individuals would be just indifferent between borrowing or

lending. In other words, r would be the riskless rate such that individuals
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choose to invest zero amounts of the consumption good at this rate. Since all

individuals are identical, this amounts to the riskless investment having a zero

supply in the economy, so that r is really a “shadow”riskless rate. Yet, this

rate would be consistent, in equilibrium, with the specification of the economy’s

other technologies.

Let us solve for this equilibrium riskless rate in the CIR economy. The indi-

vidual’s consumption and portfolio choice problem is similar to that in Chapter

12, (12.4), except that the individual’s savings are now allocated, either di-

rectly or indirectly through firms, to the n technologies. An equilibrium is

defined as a set of interest rate, consumption, and portfolio weight processes

{r, C∗, ω∗1, ..., ω∗n} such that the representative individual’s first order condi-

tions hold and markets clear:
∑n
i=1 ωi = 1 and ωi ≥ 0. Note that because∑n

i=1 ωi = 1, this definition of equilibrium implies that riskless borrowing and

lending at the equilibrium rate r has zero net supply. Further, since the capital-

consumption good is being physically invested in the technological processes, the

constraint against short-selling, ωi ≥ 0, applies.

To solve for the representative individual’s optimal consumption and portfo-

lio weights, note that since in equilibrium the individual does not borrow or lend,

the individual’s situation is exactly as if a riskless asset did not exist. Hence,

the individual’s consumption and portfolio choice problem is the same one as in

the previous chapter but where the process for wealth excludes a risk-free asset.

Specifically, the individual solves

max
Cs,{ωi,s},∀s,i

Et

[∫ T

t

U (Cs, s) ds + B(WT , T )

]
(13.30)

subject to

dW =

n∑
i=1

ωiWµi dt − Ct dt +

n∑
i=1

ωiWσi dzi (13.31)
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and also subject to the condition
∑n
i=1 ωi = 1 and the constraint that ωi ≥ 0.

The individual’s first-order condition for consumption is the usual one:

0 =
∂U (C∗, t)

∂C
− ∂J (W,x, t)

∂W
(13.32)

but the first-order conditions with respect to the portfolio weights are modified

slightly. If we let λ be the Lagrange multiplier associated with the equality∑n
i=1 ωi = 1, then the appropriate first-order conditions for the portfolio weights

are

Ψi ≡
∂J

∂W
µiW +

∂2J

∂W 2

n∑
j=1

σijω
∗
jW

2 +

k∑
j=1

∂2J

∂xj ∂W
φijW − λ ≤ 0

0 = Ψiω
∗
i i = 1, . . . , n (13.33)

The Kuhn-Tucker conditions in (13.33) imply that if Ψi < 0, then ω∗i = 0, so

that in this case the ith technology would not be employed. Assuming that the

parameters in (13.28) and (13.29) are such that all technologies are employed,

that is, Ψi = 0 ∀i, then the solution to the system of equations in (13.33) is

ω∗i = − JW
JWWW

n∑
j=1

νijµj −
k∑

m=1

n∑
j=1

JWxm

JWWW
νijφjm +

λ

JWWW 2

n∑
j=1

νij (13.34)

for i = 1, ..., n. Using our previously defined matrix notation, (13.34) can be

rewritten as

ω∗ =
A

W
Ω−1µ− Aλ

JWW 2
Ω−1e+

k∑
j=1

Hj

W
Ω−1φj (13.35)

where A = −JW /JWW , Hj = −JWxj/JWW , and φj = (φ1j , ..., φnj)
′. These

portfolio weights can be interpreted as a linear combination of k + 2 portfolios.

The first two portfolios are mean-variance effi cient portfolios in a single-period,
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Markowitz portfolio selection model: Ω−1µ is the portfolio on the effi cient fron-

tier that is tangent to a line drawn from the origin (a zero interest rate) while

Ω−1e is the global minimum variance portfolio.6 The last k portfolios, Ω−1φj ,

j = 1, ..., k, are held to hedge against changes in the technological risks (invest-

ment opportunities). The proportions of these k+2 portfolios chosen depend on

the individual’s utility. An exact solution is found in the usual manner of sub-

stituting (13.35) and (12.18) into the Bellman equation. For specific functional

forms, a value for the indirect utility function, J (W,x, t) can be derived. This,

along with the restriction
∑n
i=1 ωi = 1, allows the specific optimal consumption

and portfolio weights to be determined.

Since in the CIR economy the riskless asset is in zero net supply, we know

that the portfolio weights in (13.35) must be those chosen by the representative

individual even if offered the opportunity to borrow or lend at rate r. Recall

from the previous chapter’s equation (12.21) that these conditions, rewritten in

matrix notation, are

ω∗ =
A

W
Ω−1 (µ−re) +

k∑
j=1

Hj

W
Ω−1φj , i = 1, . . . , n (13.36)

Since the individual takes prices and rates as given, the portfolio choices given

by the first-order conditions in (13.36) namely, the case when a riskless asset

exists therefore must be the same as (13.35). By inspection, the weights in

(13.35) and (13.36) are identical when r = λ/ (JWW ). Hence, substituting for

λ in terms of the optimal portfolio weights, we can write the equilibrium interest

6Recall that a linear combination of any two portfolios on the mean-variance frontier can
create any other portfolio on the frontier.
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as7

r =
λ

WJW
(13.37)

= ω∗′µ−W
A
ω∗′Ωω∗ +

k∑
j=1

Hj

A
ω∗′φj

Note that equation (13.37) is the same as the previously derived relationship

(13.10) except that (13.37) is extended to k state variables. Hence, Merton’s

ICAPM, as well as Breeden’s CCAPM, hold for the CIR economy.

The CIR model also can be used to find the equilibrium shadow prices of

other securities that are assumed to have zero net supplies. Such “contin-

gent claims”could include securities such as longer maturity bonds or options

and futures. For example, suppose a zero-net-supply contingent claim has

a payoff whose value could depend on wealth, time, and the state variables,

P (W, t, {xi}).8 Itô’s lemma implies that its price will follow a process of the

form

dP = uPdt+ PWW

n∑
i=1

ω∗i σidzi +

k∑
i=1

Pxibidζi (13.38)

where

uP = PW (Wω∗′µ− C) +

k∑
i=1

Pxiai + Pt +
PWWW

2

2
ω∗′Ωω∗

+

k∑
i=1

PWxiWω
∗′φi +

1

2

k∑
i=1

k∑
j=1

Pxixj bij (13.39)

Using the Merton ICAPM result (13.9) extended to k state variables, the ex-

7To derive the second line in (13.37), it is easiest to write in matrix form the first-order
condtions in (13.33) and assume these conditions all hold as equalities. Then solve for λ by
pre-multiplying by ω∗′ and noting that ω∗′e = 1.

8A contingent claim whose payoff depends on the returns or prices of the technologies can
be found by the Black-Scholes methodolgy described in Chapter 9.
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pected rate of return on the contingent claim must also satisfy9

u = r +
W

A
Cov (dP/P, dW/W )−

k∑
i=1

Hi

A
Cov (dP/P, dxi) (13.40)

or

uP = rP +
1

A
Cov (dP, dW )−

k∑
i=1

Hi

A
Cov (dP, dxi)

= rP +
1

A

(
PWW

2ω∗′Ωω∗ +

k∑
i=1

PxiWω
∗′φi

)

−
k∑
i=1

Hi

A

PWWω∗′φi +

k∑
j=1

Pxj bij

 (13.41)

where in (13.40) we make use of the fact that the market portfolio equals the

optimally invested wealth of the representative individual. Equating (13.39)

and (13.41) and recalling the value of the equilibrium risk-free rate in (13.37),

we obtain a partial differential equation for the contingent claim’s value:10

0 =
PWWW

2

2
ω∗′Ωω∗ +

k∑
i=1

PWxiWω
∗′φi +

1

2

k∑
i=1

k∑
j=1

Pxixj bij + Pt +

PW (rW − C) +

k∑
i=1

Pxi

ai − W

A
ω∗′φi +

k∑
j=1

Hjbij
A

− rP (13.42)

The next section illustrates how (13.37) and (13.42) can be used to find

the risk free rate and particular contingent claims for a specific case of a CIR

9Condition (13.9) can be derived for the case of a contingent claim by using the fact that
the contingent claim’s weight in the market portfolio is zero.
10 It is straightforward to derive the valuation equation for a contingent claim that pays a

continuous dividend at rate δ (W,x, t) dt. In this case, the additional term δ (W,x, t) appears
on the right-hand side of equation (13.42).
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economy.

13.3.1 An Example Using Log Utility

The example in this section is based on (Cox, Ingersoll, and Ross 1985b). It as-

sumes that the representative individual’s utility and bequest functions are loga-

rithmic and of the form U(Cs, s) = e−ρs ln (Cs) and B (WT , T ) = e−ρT ln (WT ).

For this specification, we showed in the previous chapter that the indirect util-

ity function was separable and equaled J (W,x, t) = d (t) e−ρt ln (Wt) + F (x, t)

where d (t) = 1
ρ

[
1− (1− ρ) e−ρ(T−t)

]
, so that optimal consumption satisfies

equation (12.50) and the optimal portfolio proportions equal (12.44). Since

JWxi = 0, Hi = 0, and A = W , the portfolio proportions in (13.35) simplify to

ω∗ = Ω−1 (µ−re) (13.43)

where we have used the result that r = λ/ (JWW ). Using the market clearing

condition e′ω∗ = 1, we can solve for the equilibrium risk-free rate:

r =
e′Ω−1µ− 1

e′Ω−1e
(13.44)

Substituting (13.44) into (13.43), we see that the optimal portfolio weights are

ω∗ = Ω−1

[
µ−

(
e′Ω−1µ− 1

e′Ω−1e

)
e

]
(13.45)

Let us next assume that a single state variable, x (t) , affects all production

processes in the following manner:

dηi/ηi = µ̂ix dt + σ̂i
√
xdzi, i = 1, ..., n (13.46)

where µ̂i and σ̂i are assumed to be constants and the state variable follows the
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square root process11

dx = (a0 + a1x) dt+ b0
√
xdζ (13.47)

where dzidζ = ρidt. Note that this specification implies that the means and

variances of the technologies’rates of return are proportional to the state vari-

able. If a0 > 0 and a1 < 0, x is a nonnegative, mean-reverting random variable.

A rise in x raises all technologies’expected rates of return but also increases

their variances.

We can write the technologies’n × 1 vector of expected rates of return as

µ = µ̂x and their n×n matrix of rate of return covariances as Ω = Ω̂x. Using

these distributional assumptions in (13.44), we find that the equilibrium interest

rate is proportional to the state variable:

r =
e′Ω̂−1µ̂− 1

e′Ω̂−1e
x = αx (13.48)

where α ≡
(
e′Ω̂−1µ̂− 1

)
/e′Ω̂−1e is a constant. This implies that the risk-free

rate follows a square root process of the form

dr = αdx = κ (r − r) dt+ σ
√
rdζ (13.49)

where κ ≡ −a1 > 0, r ≡ −αa0/a1 > 0, and σ ≡ b0
√
α. CIR (Cox, Ingersoll,

and Ross 1985b) state that when the parameters satisfy 2κr ≥ σ2, then if r (t)

is currently positive, it will remain positive at all future dates T ≥ t. This is an

attractive feature if the model is used to characterize a nominal interest rate.12

11This process is a specific case of the more general constant elasticity of variance process
given by dx = (a0 + a1x) dt+ b0xcdq where c ∈ [0, 1].
12 In contrast, recall from Chapter 9 that the Vasicek model (Vasicek 1977) assumes that the

risk-free rate follows an Ornstein-Uhlenbeck process, which implies that r has a discrete-time
normal distribution. Hence, the Vasicek model may be preferred for modeling a real interest
rate since r can become negative. See (Pennacchi 1991) for such an application. It can
be shown that the discrete-time distribution for the CIR interest rate process in (13.49) is a
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Next, let us consider how to value contingent claims based on this example’s

assumptions. Specifically, let us consider the price of a default-free discount

bond that pays one unit of the consumption good when it matures at date T ≥ t.

Since this bond’s payoff is independent of wealth, and since logarithmic utility

implies that the equilibrium interest rate and optimal portfolio proportions are

independent of wealth, the price of this bond will also be independent of wealth.

Hence, the derivatives PW , PWW , and PWx in the valuation equation (13.42)

will all be zero. Moreover, since r = αx, it will be insightful to think of r as

the state variable rather than x, so that the date t bond price can be written

as P (r, t, T ). With these changes, the valuation equation (13.42) becomes13

σ2r

2
Prr + [κ (r − r)− ψr]Pr − rP + Pt = 0 (13.50)

where ψ is a constant equal to ω̂′φ̂. ω̂ equals the right-hand side of equation

(13.45) but with µ replaced by µ̂ and Ω replaced by Ω̂, while φ̂ is an n × 1

vector of constants whose ith element is σσ̂iρi. ψr = ω∗′φ is the covariance of

interest rate changes with the proportional change in optimally invested wealth.

In other words, it is the interest rate’s “beta” (covariance with the market

portfolio’s return).

The partial differential equation (13.50), when solved subject to the bound-

ary condition P (r, T, T ) = 1, leads to the bond pricing formula

P (r, t, T ) = A (τ) e−B(τ)r (13.51)

noncentral chi-square.
13Recall that logarithmic utility implies A = W and H = 0.
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where τ = T − t,

A (τ) ≡
[

2θe(θ+κ+ψ) τ2

(θ + κ+ ψ) (eθτ − 1) + 2θ

]2κr/σ2

(13.52)

B (τ) ≡
2
(
eθτ − 1

)
(θ + κ+ ψ) (eθτ − 1) + 2θ

(13.53)

and θ ≡
√

(κ+ ψ)
2

+ 2σ2. This CIR bond price can be contrasted with that of

the Vasicek model derived in Chapter 9, equation (9.39). They are similar in

having the same structure given in equation (13.51) but with different values for

A (τ) and B (τ). Hence, the discount bond yield, Y (r, τ) ≡ − ln [P (r, t, T )] /τ

= − ln [A (τ)] /τ +B (τ) r/τ , is linear in the state variable for both models.14

But the two models differ in a number of ways. Recall that Vasicek directly

assumed that the short rate, r, followed an Ornstein-Uhlenbeck process and

derived the result that, in the absence of arbitrage, the market price of interest

rate risk must be the same for bonds of all maturities. Using the notation

of µp (r, τ) and σp (τ) to be the mean and standard deviation of the return on

a bond with τ periods to maturity, it was assumed that the market price of

interest rate risk,
[
µp (r, τ)− r

]
/σp (τ), was a constant.

In contrast, the CIR model derived an equilibrium square root process for

r based on assumptions of economic fundamentals (tastes and technologies).

Moreover, the derivation of bond prices did not focus on the absence of ar-

bitrage but rather the (zero-net-supply) market clearing conditions consistent

with individuals’consumption and portfolio choices. Moreover, unlike the Va-

sicek model, the CIR derivation required no explicit assumption regarding the

form of the market price of interest rate risk. Rather, this market price of risk

was endogenous to the model’s other assumptions regarding preferences and

14Models having bond yields that are linear in the state variables are referred to as affi ne
models of the term structure. Such models will be discussed further in Chapter 17.
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technologies. Let’s solve for the market risk premium implicit in CIR bond

prices.

Note that Itô’s lemma says that the bond price follows the process

dP = Prdr +
1

2
Prrσ

2rdt+ Ptdt (13.54)

=

(
1

2
Prrσ

2r + Pr [κ (r − r)] + Pt

)
dt+ Prσ

√
rdζ

In addition, rearranging (13.50) implies that 1
2Prrσ

2r + Pr [κ (r − r)] + Pt =

rP + ψrPr. Substituting this into (13.54), it can be rewritten as

dP/P = r

(
1 + ψ

Pr
P

)
dt+

Pr
P
σ
√
rdζ (13.55)

= r (1− ψB (τ)) dt−B (τ)σ
√
rdζ

where we have used equation (13.51)’s result that Pr/P = −B (τ) in the second

line of (13.55). Hence, we can write

µp (r, τ)− r
σp (r, τ)

=
−ψrB (τ)

σ
√
rB (τ)

= −ψ
√
r

σ
(13.56)

so that the market price of interest rate risk is not constant, as in the Vasicek

model, but is proportional to the square root of the interest rate. When ψ < 0,

which occurs when the interest rate is negatively correlated with the return

on the market portfolio (and bond prices are positively correlated with the

market portfolio), bonds will carry a positive risk premium. CIR (Cox, Ingersoll,

and Ross 1985b) argue that their equilibrium approach to deriving a market

risk premium avoids problems that can occur when, following the no-arbitrage

approach, an arbitrary form for a market risk premium is assumed. They show

that some functional forms for market risk premia are inconsistent with the

no-arbitrage assumption.
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13.4 Summary

In a multiperiod, continuous-time environment, the Merton ICAPM shows that

when investment opportunities are constant, the expected returns on assets

satisfy the single-period CAPM relationship. For the more interesting case

of changing investment opportunities, the CAPM relationship is generalized

to include risk premia reflecting an asset’s covariances with asset portfolios

that best hedge against changes in investment opportunities. However, this

multibeta relationship can be simplified to express an asset’s expected return in

terms of a single consumption beta.

The Cox, Ingersoll, and Ross model of a production economy helps to justify

the ICAPM results by showing that they are consistent with a model that starts

from more primitive assumptions regarding the nature of an economy’s asset

supplies. It also can be used to derive the economy’s equilibrium risk-free

interest rate and the shadow prices of contingent claims that are assumed to be

in zero net supply. One important application of the model is a derivation of

the equilibrium term structure of interest rates.

The next chapter builds on our results to this point by generalizing individ-

uals’ lifetime utility functions. No longer will we assume that utility is time

separable. Allowing for time-inseparable utility can lead to different equilibrium

relationships between asset returns that can better describe empirical findings.

13.5 Exercises

1. Consider a CIR economy similar to the log utility example given in this

chapter. However, instead of the productive technologies following the
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processes of equation (13.46), assume that they satisfy

dηi/ηi = µ̂ix dt + σidzi, i = 1, ..., n

In addition, rather than assume that the state variable follows the process

(13.47), suppose that it is given by

dx = (a0 + a1x) dt+ b0dζ

where dzidζ = ρidt. It is assumed that a0 > 0 and a1 < 0.

a. Solve for the equilibrium risk-free interest rate, r, and the process it fol-

lows, dr. What parametric assumptions are needed for the unconditional

mean of r to be positive?

b. Derive the optimal (market) portfolio weights for this economy, ω∗. How

does ω∗ vary with r?

c. Derive the partial differential equation for P (r, t, T ), the date t price of

a default-free discount bond that matures at date T . Does this equation

look familiar?

2. Consider the intertemporal consumption-portfolio choice model and the

Intertemporal Capital Asset Pricing Model of Merton and its general equi-

librium specification by Cox, Ingersoll, and Ross.

a. What assumptions are needed for the single-period Sharpe-Treyner-Linter-

Mossin CAPM results to hold in this multiperiod environment where con-

sumption and portfolio choices are made continuously?
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b. Briefly discuss the portfolio choice implications of a situation in which

the instantaneous real interest rate, r (t), is stochastic, following a mean-

reverting process such as the square root process of Cox, Ingersoll, and

Ross or the Ornstein-Uhlenbeck process of Vasicek. Specifically, sup-

pose that individuals can hold the instantaneous-maturity risk-free asset,

a long-maturity default-free bond, and equities (stocks) and that a rise in

r (t) raises all assets’expected rates of return. How would the results differ

from the single-period Markowitz portfolio demands? In explaining your

answer, discuss how the results are sensitive to utility displaying greater

or lesser risk aversion compared to log utility.

3. Consider a continuous-time version of a Lucas endowment economy. Let

Ct be the aggregate dividends paid at date t, which equals aggregate

consumption at date t. It is assumed to follow the lognormal process

dC/C = µcdt+ σcdzc (1)

where µc and σc are constants. The economy is populated with represen-

tative individuals whose lifetime utility is of the form

Et

[∫ ∞
t

e−ρs
Cγs
γ
ds

]
(2)

a. Solve for the process followed by the continuous-time pricing kernel, Mt.

In particular, relate the equilibrium instantaneous risk-free interest rate

and the market price of risk to the parameters in equation (1) and utility

function (2) above.
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b. Suppose that a particular risky asset’s price follows the process

dS/S = µsdt+ σsdzs

where dzsdzc = ρscdt. Derive a value for µs using the pricing kernel

process.

c. From the previous results, show that Merton’s Intertemporal Capital As-

set Pricing Model (ICAPM) and Breeden’s Consumption Capital Asset

Pricing Model (CCAPM) hold between this particular risky asset and the

market portfolio of all risky assets.



408 CHAPTER 13. EQUILIBRIUM ASSET RETURNS



Chapter 14

Time-Inseparable Utility

In previous chapters, individuals’multiperiod utility functions were assumed

to be time separable. In a continuous-time context, time-separable expected

lifetime utility was specified as

Et

[∫ T

t

U (Cs, s) ds

]
(14.1)

where U (Cs, s) is commonly taken to be of the form

U (Cs, s) = e−ρ(s−t)u (Cs) (14.2)

so that utility at date s depends only on consumption at date s and not con-

sumption at previous or future dates. However, as was noted earlier, there is

substantial evidence that standard time-separable utility appears inconsistent

with the empirical time series properties of U.S. consumption data and the av-

erage returns on risky assets (common stocks) and risk-free investments. These

empirical contradictions, referred to as the equity premium puzzle and the risk-

free interest rate puzzle, have led researchers to explore lifetime utility functions

409
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that differ from function (14.1) by permitting more general time-inseparable

forms.

In this chapter we consider two types of lifetime utility functions that are

not time separable. The first type is a class of lifetime utility functions for

which past consumption plays a role in determining current utility. These

utility functions display habit persistence. We summarize two models of this

type, one by George Constantinides (Constantinides 1990) and the other by

John Campbell and John Cochrane (Campbell and Cochrane 1999). In addi-

tion to modeling habit persistence differently, these models provide interesting

contrasts in terms of their assumptions regarding the economy’s aggregate sup-

plies of assets and the techniques we can use to solve them. Constantinides’

internal habit persistence model is a simple example of a Cox, Ingersoll, and

Ross production economy (Cox, Ingersoll, and Ross 1985a) where asset supplies

are perfectly elastic. It is solved using a Bellman equation approach. Camp-

bell and Cochrane present a model of external habit persistence or “Keeping

Up with the Joneses”preferences. Their model assumes a Lucas endowment

economy (Lucas 1978) where asset supplies are perfectly inelastic. Its solution

is based on the economy’s stochastic discount factor.

The second type of time-inseparable utility that we discuss is called recur-

sive utility. From one perspective, recursive utility is the opposite of habit

persistence because recursive utility functions make current utility depend on

expected values of future utility, which in turn depends on future consumption.

We illustrate this type of utility by considering the general equilibrium of an

economy where representative consumer-investors have recursive utility. The

specific model that we analyze is a continuous-time version of a discrete-time

model by Maurice Obstfeld (Obstfeld 1994). A useful aspect of this model

is that it enables us to easily distinguish between an individual’s coeffi cient of
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relative risk aversion and his elasticity of intertemporal substitution.

By generalizing utility functions to permit habit persistence or to be recur-

sive, we hope to provide better models of individuals’actual preferences and

their resulting consumption and portfolio choice decisions. In this way, greater

insights into the nature of equilibrium asset returns may be possible. Specif-

ically, we can analyze these models in terms of their ability to resolve various

asset pricing "puzzles," such as the equity premium puzzle and the risk-free rate

puzzle that arise when utility is time separable. Let us first investigate how

utility can be extended from the standard time-separable, constant relative-

risk-aversion case to display habit persistence. We then follow this with an

examination of recursive utility.

14.1 Constantinides’Internal Habit Model

The notion of habit persistence can be traced to the writings of Alfred Marshall

(Marshall 1920), James Duesenberry (Duesenberry 1949), and more recently,

Harl Ryder and Geoffrey Heal (Ryder and Heal 1973). It is based on the

idea that an individual’s choice of consumption affects not only utility today

but directly affects utility in the near future because the individual becomes

accustomed to today’s consumption standard.

Let us illustrate this idea by presenting Constantinides’internal habit forma-

tion model, which derives a representative individual’s consumption and port-

folio choices in a simple production economy. It is based on the following

assumptions.

14.1.1 Assumptions

Technology

A single capital-consumption good can be invested in up to two different
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technologies. The first is a risk-free technology whose output, Bt, follows the

process

dB/B = r dt (14.3)

The second is a risky technology whose output, ηt, follows the process

dη/η = µdt + σ dz (14.4)

Note that the specification of technologies fixes the expected rates of return

and variances of the safe and risky investments.1 In this setting, individuals’

asset demands determine equilibrium quantities of the assets supplied rather

than asset prices. Since r, µ, and σ are assumed to be constants, there is a

constant investment opportunity set.

Preferences

Representative agents maximize expected utility of consumption, Ct, of the

form

E0

[∫ ∞
0

e−ρtu
(
Ĉt

)
dt

]
(14.5)

where u
(
Ĉt

)
= Ĉγt /γ, γ < 1, Ĉt = Ct − bxt, and

xt ≡ e−atx0 +

∫ t

0

e−a(t−s)Cs ds (14.6)

Note that if b = 0, utility is of the standard time-separable form and displays

constant relative risk aversion with a coeffi cient of relative risk aversion equal to

(1− γ). The variable xt is an exponentially weighted sum of past consumption,

so that when b > 0, the quantity bxt can be interpreted as a “subsistence,”

1 In this model, the existence of a risk-free technology determines the risk-free interest rate.
This differs from our earlier presentation of the Cox, Ingersoll, and Ross model (Cox, Ingersoll,
and Ross 1985a) where risk-free borrowing and lending is assumed to be in zero net supply
and the interest rate is an equilibrium rate determined by risky investment opportunities and
individuals’preferences.
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or “habit,” level of consumption and Ĉt = Ct − bxt can be interpreted as

“surplus” consumption. In this case, the specification in (14.5) assumes that

the individual’s utility depends on only the level of consumption in excess of

the habit level. This models the notion that an individual becomes accustomed

to a standard of living (habit), and current utility derives from only the part

of consumption that is in excess of this standard. Alternatively, if b < 0

so that past consumption adds to rather than subtracts from current utility,

then the model can be interpreted as one displaying durability in consumption

rather than habit persistence.2 Empirical evidence comparing habit formation

versus durability in consumption is mixed.3 Research that models utility as

depending on the consumptions of multiple goods, where some goods display

habit persistence and others display durability in consumption, may be a better

approach to explaining asset returns.4 However, for simplicity, here we assume

the single-good, b > 0 case introduced by Constantinides.

The Constantinides model of habit persistence makes current utility depend

on a linear combination of not only current consumption but of past consump-

tion through the variable xt. Hence, it is not time separable. An increase in

consumption at date t decreases current marginal utility, but it also increases

the marginal utility of consumption at future dates because it raises the level of

subsistence consumption. Of course, there are more general ways of modeling

habit persistence, for example, u (Ct, wt) where wt is any function of past con-

sumption levels.5 However, the linear habit persistence specification in (14.5)

2Ayman Hindy and Chi-Fu Huang (Hindy and Huang 1993) consider such a model.
3Empirical asset pricing tests by Wayne Ferson and George Constantinides (Ferson and

Constantinides 1991) that used seasonally adjusted aggregate consumption data provided more
support for habit persistence relative to consumption durability. In contrast, John Heaton
(Heaton 1995) found more support for durability after adjusting for time-averaged data and
seasonality.

4Multiple-good models displaying durability and habit persistence and durability have
been developed by Jerome Detemple, Christos Giannikos, and Zhihong Shi (Detemple and
Giannikos 1996); (Giannikos and Shi 2006).

5Jerome Detemple and Fernando Zapatero (Detemple and Zapatero 1991) consider a model
that displays nonlinear habit persistence.
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and (14.6) is attractive due to its analytical tractability.

Additional Parametric Assumptions

Let W0 be the initial wealth of the representative individual. The following

parametric assumptions are made to have a well-specified consumption and

portfolio choice problem.

W0 >
bx0

r + a− b > 0 (14.7)

r + a > b > 0 (14.8)

ρ− γr − γ(µ− r)2

2(1− γ)σ2
> 0 (14.9)

0 ≤ m ≡ µ− r
(1− γ)σ2

≤ 1 (14.10)

The reasons for making these parametric assumptions are the following. Note

that Ct needs to be greater than bxt for the individual to avoid infinite mar-

ginal utility.6 Conditions (14.7) and (14.8) ensure that an admissible (feasible)

consumption and portfolio choice strategy exists that enables Ct > bxt.7 To see

this, note that the dynamics for the individual’s wealth are given by

dW = {[(µ− r)ωt + r]W − Ct} dt + σωtW dz (14.11)

where ωt, 0 ≤ ωt ≤ 1 is the proportion of wealth that the individual invests

in the risky technology. Now if ωt = 0 for all t, that is, one invests only in

the riskless technology, and consumption equals a fixed proportion of wealth,

6Note that limCt→bxt (Ct − bxt)−(1−γ) =∞.
7The ability to maintain Ct > bxt is possible when the underlying economy is assumed to be

a production economy because individuals have the freedom of determining the aggregate level
of consumption versus savings. This is not possible in an endowment economy where the path
of Ct and, therefore, its exponentially weighted average, xt, is assumed to be an exogenous
stochastic process. For many random processes, there will be a positive probability that
Ct < bxt. Based on this observation, David Chapman (Chapman 1998) argues that many
models that assume a linear habit persistence are incompatible with an endowment economy
equilibrium.
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Ct = (r + a− b)Wt, then

dW = {rW − (r + a− b)W} dt = (b− a)Wdt (14.12)

which is a first-order differential equation in W having the initial condition that

it equal W0 at t = 0. Its solution is

Wt = W0e
(b−a)t > 0 (14.13)

so that wealth always stays positive. This implies Ct = (r+a−b)W0 e
(b−a)t > 0

and

Ct − bxt = (r + a− b)W0e
(b−a)t − b

[
e−atx0 +

∫ t

0

e−a(t−s)(r + a− b)W0 e
(b−a)s ds

]

= (r + a− b)W0 e
(b−a)t −

[
e−atbx0 + b(r + a− b)W0e

−at
∫ t

0

ebs ds

]

= (r + a− b)W0 e
(b−a)t −

[
e−atbx0 + (r + a− b)W0e

−at(ebt − 1)
]

= e−at [ (r + a− b)W0 − bx0 ]

(14.14)

which is greater than zero by assumption (14.7).

Condition (14.9) is a transversality condition. It ensures that if the individ-

ual follows an optimal policy (which will be derived next), the expected utility of

consumption over an infinite horizon is finite. As will be seen, condition (14.10)

ensures that the individual chooses to invest a nonnegative amount of wealth

in the risky and risk-free technologies, since short-selling physical investments

is infeasible. Recall from Chapter 12, equation (12.35) that m is the opti-

mal choice of the risky-asset portfolio weight for the time-separable, constant
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relative-risk-aversion case.

14.1.2 Consumption and Portfolio Choices

The solution technique presented here uses a dynamic programming approach

similar to that of (Sundaresan 1989) and our previous derivation of consumption

and portfolio choices under time-separable utility.8 The individual’s maximiza-

tion problem is

max
{Cs, ωs}

Et

[∫ ∞
t

e−ρ s
[Cs − bxs]γ

γ
ds

]
≡ e−ρ tJ(Wt, xt) (14.15)

subject to the intertemporal budget constraint given by equation (14.11). Given

the assumption of an infinite horizon, we can simplify the analysis by separating

out the factor of the indirect utility function that depends on calendar time, t;

that is, Ĵ (Wt, xt, t) = e−ρ tJ(Wt, xt). The “discounted” indirect utility func-

tion depends on two state variables: wealth, Wt, and the state variable xt, the

current habit level of consumption. Since there are no changes in investment

opportunities (µ, σ, and r are all constant), there are no other relevant state

variables. Similar to wealth, xt is not exogenous but depends on past con-

sumption. We can work out its dynamics by taking the derivative of equation

(14.6):

dx/dt = −ae−atx0 + Ct − a

∫ t

0

e−a(t−s)Cs ds, or (14.16)

dx = (Ct − axt) dt (14.17)

8 Interestingly, Mark Schroder and Costis Skiadas (Schroder and Skiadas 2002) show that
consumption-portfolio choice models where an individual displays linear habit formation can
be transformed into a consumption-portfolio model where the individual does not exhibit
habit formation. This can often simplify solving such problems. Further, known solutions to
time-separable or recursive utility consumption-portfolio choice problems can be transformed
to obtain novel solutions that also display linear habit formation.



14.1. CONSTANTINIDES’INTERNAL HABIT MODEL 417

Thus, changes in xt are instantaneously deterministic. The Bellman equation is

then

0 = max
{Ct,ωt}

{
U(Ct, xt, t) + L[e−ρtJ ]

}

= max
{Ct,ωt}

{
e−ρtγ−1(Ct − bxt)γ + e−ρtJW [((µ− r)ωt + r)W − Ct]

+
1

2
e−ρtJWWσ

2ω2
tW

2 + e−ρtJx (Ct − axt)−ρe−ρtJ }
(14.18)

The first-order conditions with respect to Ct and ωt are

(Ct−bxt)
γ−1 = JW − Jx, or

Ct = bxt+[JW − Jx]
1

γ−1

(14.19)

and

(µ− r)WJW + ωtσ
2W 2JWW = 0, or

ωt = − JW
JWWW

µ− r
σ2

(14.20)

Note that the additional term −Jx in (14.19) reflects the fact that an increase

in current consumption has the negative effect of raising the level of subsistence

consumption, which decreases future utility. The form of (14.20), which de-

termines the portfolio weight of the risky asset, bears the same relationship to

indirect utility as in the time-separable case.

Substituting (14.19) and (14.20) back into (14.18), we obtain the equilibrium

partial differential equation:
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1− γ
γ

[JW − Jx]
−γ
1−γ − J2

W

JWW

(µ− r)2

2σ2
+ (rW − bx)JW + (b− a)xJx − ρJ = 0

(14.21)

From our previous discussion of the time-separable, constant relative-risk-aversion

case (a = b = x = 0), when the horizon is infinite, we saw from (12.33) that a

solution for J is of the form J(W ) = kW γ . For this previous case, u = Cγ/γ,

uc = JW , and optimal consumption was a constant proportion of wealth:

C∗t = (γk)
1

(γ−1)Wt = Wt

[
ρ− rγ − 1

2
(

γ

1− γ )
(µ− r)2

σ2

]
/ (1− γ) (14.22)

and

ω∗t = m (14.23)

where m is defined in condition (14.10).

These results for the time-separable case suggest that the derived utility-of-

wealth function for the time-inseparable case might have the form

J(W, x) = k0[W + k1x]γ (14.24)

Making this guess, substituting it into (14.21), and setting the coeffi cients on x

and W equal to zero, we find

k0 =
(r + a− b)hγ−1

(r + a)γ
(14.25)

where

h ≡ r + a− b
(r + a)(1− γ)

[
ρ− γr − γ(µ− r)2

2(1− γ)σ2

]
> 0 (14.26)

and

k1 = − b

r + a− b < 0. (14.27)
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Using equations (14.19) and (14.20), this implies

Ct
∗ = bxt + h

[
Wt −

bxt
r + a− b

]
(14.28)

and

ω∗t = m

[
1− bxt/Wt

r + a− b

]
(14.29)

Interestingly, since r + a > b, by assumption, the individual always demands

less of the risky asset compared to the case of no habit persistence. Thus we

would expect lower volatility of wealth over time.

In order to study the dynamics of C∗t , consider the change in the term[
Wt − bxt

r+a−b

]
. Recall that the dynamics of Wt and xt are given in equations

(14.11) and (14.17), respectively. Using these, one finds

d

[
Wt −

bxt
r + a− b

]
=

{
[ (µ− r)ω∗t + r]Wt − C∗t − b

C∗t − axt
r + a− b

}
dt+ σω∗tWt dz

(14.30)

Substituting in for ω∗t and C
∗
t from (14.28) and (14.29), one obtains

d

[
Wt −

bxt
r + a− b

]
=

[
Wt −

bxt
r + a− b

]
[ndt+mσ dz] (14.31)

where

n ≡ r − ρ
1− γ +

(µ− r)2(2− γ)

2(1− γ)2σ2
(14.32)

Using this and (14.28), one can show9

dCt
Ct

=

[
n+ b− (n+ a)bxt

Ct

]
dt+

(
Ct − bxt
Ct

)
mσ dz (14.33)

For particular parametric conditions, the ratio bxt
Ct−bxt has a stationary distribu-

9See Appendix A in (Constantinides 1990).
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tion.10 However, one sees from the stochastic term in (14.33),
(
Ct−bxt
Ct

)
mσ dz,

that consumption growth is smoother than in the case of no habit persistence.

For a given equity (risky-asset) risk premium, this can imply relatively smooth

consumption paths, even though risk aversion, γ, may not be of a very high

magnitude. To see this, recall from Chapter 4’s inequality (4.32) that the

Hansen-Jagannathan (H-J) bound for the time-separable case can be written as

∣∣∣∣µ− rσ
∣∣∣∣ ≤ (1− γ)σc (14.34)

In the current case of habit persistence, from (14.33) we see that the instanta-

neous standard deviation of consumption growth is

σc,t =

(
Ct − bxt
Ct

)
mσ (14.35)

=

(
Ĉt
Ct

)[
µ− r

(1− γ)σ2

]
σ

where, recall, that Ĉt ≡ Ct−bxt is defined as surplus consumption. If we define

St ≡ Ĉt/Ct as the surplus consumption ratio, we can rearrange equation (14.35)

to obtain
µ− r
σ

=
(1− γ)σc,t

St
(14.36)

Since St ≡ Ct−bxt
Ct

is less than 1, we see by comparing (14.36) to (14.34) that

habit persistence may help reconcile the empirical violation of the H-J bound.

With habit persistence, the lower demand for the risky asset, relative to the

time-separable case, can result in a higher equilibrium excess return on the risky

asset and, hence, may aid in explaining the “puzzle”of a large equity premium.

However, empirical work by Wayne Ferson and George Constantinides (Ferson

and Constantinides 1991) that tests linear models of habit persistence suggests

10See Theorem 2 in (Constantinides 1990).



14.2. CAMPBELL AND COCHRANE’S EXTERNAL HABIT MODEL 421

that these models cannot produce an equity risk premium as large as that found

in historical equity returns.

Let us next turn to another approach to modeling habit persistence where

an individual’s habit level depends on the behavior of other individuals and,

hence, is referred to as an external habit.

14.2 Campbell and Cochrane’s External Habit

Model

The Campbell-Cochrane external habit persistence model is based on the fol-

lowing assumptions.

14.2.1 Assumptions

Technology

Campbell and Cochrane consider a discrete-time endowment economy. Date

t aggregate consumption, which also equals aggregate output, is denoted Ct,

and it is assumed to follow an independent and identically distributed lognormal

process:

ln (Ct+1)− ln (Ct) = g + νt+1 (14.37)

where vt+1 ∼ N
(
0, σ2

)
.

Preferences

It is assumed that there is a representative individual who maximizes ex-

pected utility of the form

E0

[ ∞∑
t=0

δt
(Ct −Xt)

γ − 1

γ

]
(14.38)
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where γ < 1 and Xt denotes the “habit level.”Xt is related to past consumption

in the following nonlinear manner. Define the surplus consumption ratio, St, as

St ≡
Ct −Xt

Ct
(14.39)

Then the log of surplus consumption is assumed to follow the autoregressive

process11

ln (St+1) = (1− φ) ln
(
S
)

+ φ ln (St) + λ (St) νt+1 (14.40)

where λ (St), the sensitivity function, measures the proportional change in the

surplus consumption ratio resulting from a shock to output growth. It is as-

sumed to take the form

λ (St) =
1

S

√
1− 2

[
ln (St)− ln

(
S
)]
− 1 (14.41)

and

S = σ

√
1− γ
1− φ (14.42)

The lifetime utility function in (14.38) looks somewhat similar to (14.5)

of the Constantinides model. However, whereas Constantinides assumes that

an individual’s habit level depends on his or her own level of past consump-

tion, Campbell and Cochrane assume that an individual’s habit level depends

on everyone else’s current and past consumption. Thus, in the Constantinides

model, the individual’s choice of consumption, Ct, affects his future habit level,

bxs, for all s > t, and he takes this into account in terms of how it affects his

11This process is locally equivalent to ln (Xt) = φ ln (Xt−1) + λ ln (Ct) or ln (Xt) =
λ
∑∞
i=0 φ

i ln (Ct−i). The reason for the more complicated form in (14.40) is that it ensures
that consumption is always above habit since St is always positive. This precludes infinite
marginal utility.
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expected utility when he chooses Ct. This type of habit formation is referred

to as internal habit. In contrast, in the Campbell and Cochrane model, the

individual’s choice of consumption, Ct, does not affect her future habit level,

Xs, for all s ≥ t, so that she views Xt as exogenous when choosing Ct. This

type of habit formation is referred to as external habit or “Keeping Up with the

Joneses.”12 The external habit assumption simplifies the representative agent’s

decision making because habit becomes an exogenous state variable that de-

pends on aggregate, not the individual’s, consumption.

14.2.2 Equilibrium Asset Prices

Because habit is exogenous to the individual, the individual’s marginal utility

of consumption is

uc (Ct, Xt) = (Ct −Xt)
γ−1

= Cγ−1
t Sγ−1

t (14.43)

and the representative agent’s stochastic discount factor is

mt,t+1 = δ
uc (Ct+1, Xt+1)

uc (Ct, Xt)
= δ

(
Ct+1

Ct

)γ−1(
St+1

St

)γ−1

(14.44)

If we define r as the continuously compounded, risk-free real interest rate be-

tween dates t and t+ 1, then it equals

r = − ln (Et [mt,t+1]) = − ln
(
δEt

[
e−(1−γ) ln(Ct+1/Ct)−(1−γ) ln(St+1/St)

])
(14.45)

= − ln
(
δe−(1−γ)Et[ln(Ct+1/Ct)]−(1−γ)Et[ln(St+1/St)]+

1
2 (1−γ)2V art[ln(Ct+1/Ct)+ln(St+1/St)]

)
= − ln (δ) + (1− γ) g + (1− γ) (1− φ)

(
lnS − lnSt

)
− (1− γ)

2
σ2

2
[1 + λ (St)]

2

12A similar modeling was developed by Andrew Abel (Abel 1990).
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Substituting in for λ (St) from (14.41), equation (14.45) becomes

r = − ln (δ) + (1− γ) g − 1

2
(1− γ) (1− φ) (14.46)

which, by construction, turns out to be constant over time. One can also derive

a relationship for the date t price of the market portfolio of all assets, denoted

Pt. Recall that since we have an endowment economy, aggregate consumption

equals the economy’s aggregate output, which equals the aggregate dividends

paid by the market portfolio. Therefore,

Pt = Et [mt,t+1 (Ct+1 + Pt+1)] (14.47)

or, equivalently, one can solve for the price-dividend ratio for the market port-

folio:

Pt
Ct

= Et

[
mt,t+1

Ct+1

Ct

(
1 +

Pt+1

Ct+1

)]
(14.48)

= δEt

[(
St+1

St

)γ−1(
Ct+1

Ct

)γ (
1 +

Pt+1

Ct+1

)]

As in the Lucas model, this stochastic difference equation can be solved

forward to obtain

Pt
Ct

= δEt

[(
St+1

St

)γ−1(
Ct+1

Ct

)γ (
1 + δ

(
St+2

St+1

)γ−1(
Ct+2

Ct+1

)γ (
1 +

Pt+2

Ct+2

))]

= Et

[
δ

(
St+1

St

)γ−1(
Ct+1

Ct

)γ
+ δ2

(
St+2

St

)γ−1(
Ct+2

Ct

)γ
+ ...

]

= Et

[ ∞∑
i=1

δi
(
St+i
St

)γ−1(
Ct+i
Ct

)γ]
(14.49)

The solutions can then be computed numerically by simulating the lognormal
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processes for Ct and St. The distribution of Ct+1/Ct is lognormal and does not

depend on the level of consumption, Ct, whereas the distribution of St+1/St

does depend on the current level of St.13 Hence, the value of the market

portfolio relative to current output, Pt/Ct, varies only with the current surplus

consumption ratio, St. By numerically calculating Pt/Ct as a function of St,

Campbell and Cochrane can determine the market portfolio’s expected returns

and the standard deviation of returns as the level of St varies.

Note that in this model, the coeffi cient of relative risk aversion is given by

−Ctucc
uc

=
1− γ
St

(14.50)

and, as was shown in inequality (4.32), the relationship between the Sharpe ratio

for any asset and the coeffi cient of relative risk aversion when consumption is

lognormally distributed is approximately

∣∣∣∣E [ri]− r
σri

∣∣∣∣ ≤ −Ctuccuc
σc =

(1− γ)σc
St

(14.51)

which has a similar form to that of the Constantinides internal habit model

except, here, σc is a constant and, for the case of the market portfolio, E [ri] and

σri will be time-varying functions of St. The coeffi cient of relative risk aversion

will be relatively high when St is relatively low, that is, when consumption is

low (a recession). Moreover, the model predicts that the equity risk premium

increases during a recession (when −Ctuccuc
is high), a phenomenon that seems to

be present in the postwar U.S. stock market. Campbell and Cochrane calibrate

the model to U.S. consumption and stock market data.14 Due to the different

13Note that from (14.37) expected consumption growth, g, is a constant, but from (14.40)
the expected growth in the surplus consumption ratio, (1− φ)

[
ln
(
S
)
− ln (St)

]
, is mean-

reverting.
14They generalize the model to allow dividends on the (stock) market portfolio to differ from

consumption, so that dividend growth is not perfectly correlated with consumption growth.
Technically, this violates the assumption of an endowment economy but, empirically, there is
low correlation between growth rates of stock market dividends and consumption.
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(nonlinear) specification for St vis-à-vis the model of Constantinides, they have

relatively more success in fitting this model to data on asset prices.15

The next section introduces a class of time-inseparable utility that is much

different from habit persistence in that current utility depends on expected

future utility which, in turn, depends on future consumption. Hence, unlike

habit persistence, in which utility depends on past consumption and is backward

looking, recursive utility is forward looking.16

14.3 Recursive Utility

A class of time-inseparable utility known as recursive utility was developed by

David Kreps and Evan Porteus (Kreps and Porteus 1978) and Larry Epstein

and Stanley Zin (Epstein and Zin 1989). They analyze this type of utility

in a discrete-time setting, while Darrell Duffi e and Larry Epstein (Duffi e and

Epstein 1992a) study the continuous-time limit. In continuous time, recall that

standard, time-separable utility can be written as

Vt = Et

[∫ T

t

U (Cs, s) ds

]
(14.52)

15Empirical tests of the Campbell-Cochrane model by Thomas Tallarini and Harold Zhang
(Tallarini and Zhang 2005) confirm that the model fits variation in the equity risk premium
over the business cycle. However, while the model matches the mean returns on stocks, it
fails to match higher moments such as the variance and skewness of stock returns. Another
study by Martin Lettau and Harald Uhlig (Lettau and Uhlig 2000) embeds Campbell and
Cochrane’s external habit preferences in a production economy model having a labor-leisure
decision. In this environment, they find that individuals’ consumption and labor market
decisions are counterfactual to their actual business cycle dynamics.
16Utility can be both forward and backward looking in that it is possible to construct models

that are recursive and also display habit persistence (Schroder and Skiadas 2002).
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where U (Cs, s) is often taken to be of the form U (Cs, s) = e−ρ(s−t)u (Cs).

Recursive utility, however, is specified as

Vt = Et

[∫ T

t

f (Cs, Vs) ds

]
(14.53)

where f is known as an aggregator function. The specification is recursive in

nature because current lifetime utility, Vt, depends on expected values of future

lifetime utility, Vs, s > t. When f has appropriate properties, Darrell Duffi e and

Larry Epstein (Duffi e and Epstein 1992b) show that a Bellman-type equation

can be derived that characterizes the optimal consumption and portfolio choice

policies for utility of this type. For particular functional forms, they have been

able to work out a number of asset pricing models.

In the example to follow, we consider a form of recursive utility that is a gen-

eralization of standard power (constant relative-risk-aversion) utility in that it

separates an individual’s risk aversion from her elasticity of intertemporal sub-

stitution. This generalization is potentially important because, as was shown

in Chapter 4, equation (4.14), multiperiod power utility restricts the elasticity

of intertemporal substitution, ε, to equal 1/ (1− γ), the reciprocal of the coef-

ficient of relative risk aversion. Conceptually, this may be a strong restriction.

Risk aversion characterizes an individual’s (portfolio) choices between assets

of different risks and is a well-defined concept even in an atemporal (single-

period) setting, as was illustrated in Chapter 1. In contrast, the elasticity of

intertemporal substitution characterizes an individual’s choice of consumption

at different points in time and is inherently a temporal concept.

14.3.1 A Model by Obstfeld

Let us now consider the general equilibrium of an economy where representative

consumer-investors have recursive utility. We analyze the simple production
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economy model of Maurice Obstfeld (Obstfeld 1994). This model makes the

following assumptions.

Technology

A single capital-consumption good can be invested in up to two different

technologies. The first is a risk-free technology whose output, Bt, follows the

process

dB/B = rdt (14.54)

The second is a risky technology whose output, ηt, follows the process

dη/η = µdt+ σdz (14.55)

As in the Constantinides model’s production economy, the specification of

technologies fixes the expected rates of return and variances of the safe and risky

investments. Individuals’asset demands will determine equilibrium quantities

of the assets supplied rather than asset prices. Since r, µ, and σ are assumed

to be constants, there is a constant investment opportunity set.

Preferences

Representative, infinitely lived households must choose between consuming

(at rate Cs at date s) and investing the single capital-consumption good in the

two technologies. The lifetime utility function at date t faced by each of these

households, denoted Vt, is

Vt = Et

∫ ∞
t

f (Cs, Vs) ds (14.56)

where f , the aggregator function, is given by

f(Cs, Vs) = ρ
C

1− 1
ε

s − [γVs]
ε−1
εγ(

1− 1
ε

)
[γVs]

ε−1
εγ −1

(14.57)
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Clearly, this specification is recursive in that current lifetime utility, Vt, de-

pends on expected values of future lifetime utility, Vs, s > t. The form of equa-

tion (14.57) is ordinally equivalent to the continuous-time limit of the discrete-

time utility function specified in (Obstfeld 1994). Recall that utility functions

are ordinally equivalent; that is, they result in the same consumer choices, if the

utility functions evaluated at equivalent sets of decisions produce values that

are linear transformations of each other. It can be shown (see (Epstein and

Zin 1989) and (Duffi e and Epstein 1992a)) that ρ > 0 is the continuously com-

pounded subjective rate of time preference; ε > 0 is the household’s elasticity

of intertemporal substitution; and 1 − γ > 0 is the household’s coeffi cient of

relative risk aversion. For the special case of ε = 1/ (1− γ) , the utility func-

tion given in (14.56) and (14.57) is (ordinally) equivalent to the time-separable,

constant relative-risk-aversion case:

Vt = Et

∫ ∞
t

e−ρs
Cγs
γ
ds (14.58)

Let ωt be the proportion of each household’s wealth invested in the risky

asset (technology). Then the intertemporal budget constraint is given by

dW = [ω(µ− r)W + rW − C] dt+ ωσWdz (14.59)

When the aggregator function, f , is put in a particular form by an ordinally

equivalent change in variables, what Duffi e and Epstein (Duffi e and Epstein

1992b) refer to as a “normalization,” then a Bellman equation can be used to

solve the problem. The aggregator in (14.57) is in normalized form.

As before, let us define J (Wt) as the maximized lifetime utility at date t:
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J (Wt) = max
{Cs,ωs}

Et

∫ ∞
t

f (Cs, Vs) ds (14.60)

= max
{Cs,ωs}

Et

∫ ∞
t

f (Cs, J (Ws)) ds

Since this is an infinite horizon problem with constant investment oppor-

tunities, and the aggregator function, f (C, V ), is not an explicit function of

calendar time, the only state variable is W .

The solution to the individual’s consumption and portfolio choice problem

is given by the continuous-time stochastic Bellman equation

0 = max
{Ct,ωt}

f [Ct, J (Wt)] + L [J (Wt)] (14.61)

or

0 = max
{Ct,ωt}

f [C, J (W )] + JW [ω (µ− r)W + rW − C] +
1

2
JWWω

2σ2W 2 (14.62)

= max
{Ct,ωt}

ρ
C1− 1

ε − [γJ ]
ε−1
εγ(

1− 1
ε

)
[γJ ]

ε−1
εγ −1

+ JW [ω (µ− r)W + rW − C] +
1

2
JWWω

2σ2W 2

Taking the first-order condition with respect to C,

ρ
C−

1
ε

[γJ ]
ε−1
εγ −1

− JW = 0 (14.63)

or

C =

(
JW
ρ

)−ε
[γJ ]

1−ε
γ +ε (14.64)

Taking the first-order condition with respect to ω,
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JW (µ− r)W + JWWωσ
2W 2 = 0 (14.65)

or

ω = − JW
JWWW

µ− r
σ2

(14.66)

Substituting the optimal values for C and ω given by (14.64) and (14.66)

into the Bellman equation (14.62), we obtain the ordinary differential equation:

ρ

(
JW
ρ

)1−ε
[γJ ]

(ε−1)[1− ε−1εγ ] − [γJ ]
1−ε
εγ(

1− 1
ε

)
[γJ ]

ε−1
εγ −1

(14.67)

+JW

[
− JW
JWW

(µ− r)2

σ2
+ rW −

(
JW
ρ

)−ε
[γJ ]

1−ε
γ +ε

]
+

1

2

J2
W

JWW

(µ− r)2

σ2
= 0

or

ερ

ε− 1

[(
JW
ρ

)−ε
[γJ ]

1−ε
γ +ε − γJ

]
(14.68)

+JW

[
− JW
JWW

(µ− r)2

σ2
+ rW −

(
JW
ρ

)−ε
[γJ ]

1−ε
γ +ε

]
+

1

2

J2
W

JWW

(µ− r)2

σ2
= 0

If one “guesses” that the solution is of the form J (W ) = (aW )
γ
/γ and

substitutes this into (14.68), one finds that a = α1/(1−ε) where

α ≡ ρ−ε
(
ερ+ (1− ε)

[
r +

(µ− r)2

2 (1− γ)σ2

])
(14.69)

Thus, substituting this value for J into (14.64), we find that optimal con-
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sumption is a fixed proportion of wealth:

C = αρεW (14.70)

=

(
ερ+ (1− ε)

[
r +

(µ− r)2

2 (1− γ)σ2

])
W

and the optimal portfolio weight of the risky asset is

ω =
µ− r

(1− γ)σ2
(14.71)

which is the same as for an individual with standard constant relative risk aver-

sion and time-separable utility. The result that the optimal portfolio choice

depends only on risk aversion turns out to be an artifact of the model’s as-

sumption that investment opportunities are constant. Harjoat Bhamra and

Raman Uppal (Bhamra and Uppal 2003) demonstrate that when investment

opportunities are stochastic, the portfolio weight, ω, can depend on both γ and

ε.

Note that if ε = 1/ (1− γ), then equation (14.70) is the same as optimal con-

sumption for the time-separable, constant relative-risk-aversion, infinite horizon

case given in Chapter 12, equation (12.34), C = γ
1−γ

[
ρ
γ − r −

(µ−r)2
2(1−γ)σ2

]
W .

Similar to the time-separable case, for an infinite horizon solution to exist, we

need consumption to be positive in (14.70), which requires ρ > ε−1
ε

(
r + [µ− r]2 /

[
2 (1− γ)σ2

])
.

This will be the case when the elasticity of intertemporal substitution, ε, is suf-

ficiently small. For example, assuming ρ > 0, this inequality is always satisfied

when ε < 1.
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14.3.2 Discussion of the Model

Let us examine how optimal consumption depends on the model’s parameters.

Note that the term r+ [µ− r]2 /
[
2 (1− γ)σ2

]
in (14.70) can be rewritten using

ω = (µ− r) /
[
(1− γ)σ2

]
from (14.71) as

r +
(µ− r)2

2 (1− γ)σ2
= r + ω

µ− r
2

(14.72)

and can be interpreted as relating to the risk-adjusted investment returns avail-

able to individuals. From (14.70) we see that an increase in (14.72) increases

consumption when ε < 1 and reduces consumption when ε > 1. This result

provides intuition for the role of intertemporal substitution. When ε < 1, the

income effect from an improvement in investment opportunities dominates the

substitution effect, so that consumption rises and savings fall. The reverse oc-

curs when ε > 1: the substitution effect dominates the income effect and savings

rise.

We can also study how the growth rate of the economy depends on the

model’s parameters. Assuming 0 < ω < 1 and substituting (14.70) and (14.71)

into (14.59), we have that wealth follows the geometric Brownian motion process:

dW/W = [ω∗ (µ− r) + r − αρε] dt+ ω∗σdz (14.73)

=

[
(µ− r)2

(1− γ)σ2
+ r − ερ− (1− ε)

(
r +

(µ− r)2

2 (1− γ)σ2

)]
dt+

µ− r
(1− γ)σ

dz

=

[
ε

(
r +

(µ− r)2

2 (1− γ)σ2
− ρ
)

+
(µ− r)2

2 (1− γ)σ2

]
dt+

µ− r
(1− γ)σ

dz

Since C = αρεW , the drift and volatility of wealth in (14.73) are also the

drift and volatility of the consumption process, dC/C. Thus, consumption and

wealth are both lognormally distributed and their continuously compounded
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growth, d lnC, has a volatility, σc, and mean, gc, equal to

σc =
µ− r

(1− γ)σ
(14.74)

and

gc = ε

(
r +

(µ− r)2

2 (1− γ)σ2
− ρ
)

+
(µ− r)2

2 (1− γ)σ2
− 1

2
σ2
c

= ε

(
r +

(µ− r)2

2 (1− γ)σ2
− ρ
)
− γ (µ− r)2

2 (1− γ)
2
σ2

(14.75)

From (14.75) we see that if r+[µ− r]2 /
[
2 (1− γ)σ2

]
> ρ, then an economy’s

growth rate is higher the higher is intertemporal substitution, ε, since individuals

save more. Also, consider how an economy’s rate varies with the squared Sharpe

ratio, [µ− r]2 /σ2, a measure of the relative attractiveness of the risky asset.

The sign of the derivative ∂gc/∂
(

[µ− r]2 /σ2
)
equals the sign of ε−γ/ (1− γ).

For the time-separable, constant relative-risk-aversion case of ε = 1/ (1− γ),

this derivative is unambiguously positive, indicating that a higher µ or a lower

σ would result in the economy growing faster. However, in the general case,

the economy could grow slower if ε < γ/ (1− γ). Why? Although from (14.71)

we see that individuals put a large proportion of their wealth into the faster-

growing risky asset as the Sharpe ratio rises, a higher Sharpe ratio leads to

greater consumption (and less savings) when ε < 1. For ε < γ/ (1− γ), the

effect of less savings dominates the portfolio effect and the economy is expected

to grow more slowly.

Obstfeld points out that the integration of global financial markets that

allows residents to hold risky foreign, as well as domestic, investments increases

diversification and effectively reduces individuals’risky portfolio variance, σ2.
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This reduction in σ would lead individuals to allocate a greater proportion of

their wealth to the higher-yielding risky assets. If ε > γ/ (1− γ), financial

market integration also would predict that countries would tend to grow faster.

It is natural to ask whether this recursive utility specification, which distin-

guishes between risk aversion and the intertemporal elasticity of substitution,

can provide a better fit to historical asset returns compared to time-separable

power utility. In terms of explaining the equity premium puzzle, from (14.74)

we see that the risky-asset Sharpe ratio, (µ− r) /σ, equals (1− γ)σc, the same

form as with time-separable utility. So, as discussed earlier, one would still

need to assume that the coeffi cient of relative risk aversion (1− γ) were quite

high in order to justify the equity risk premium. However, recursive utility

has more hope of explaining the risk-free rate puzzle because of the additional

degree of freedom added by the elasticity of substitution parameter, ε. If we

substitute (14.74) into (14.75) and solve for the risk-free rate, we find

r = ρ+
gc
ε
−
[
1− γ − γ

ε

] σ2
c

2
(14.76)

Recall that for the time-separable case of ε = 1/ (1− γ), we have

r = ρ+ (1− γ) gc − (1− γ)
2 σ

2
c

2
(14.77)

Because, empirically, gc ≈ 0.018 is large relative to σ2
c/2 ≈ 0.032/2 = 0.00045,

the net effect of higher risk aversion, 1−γ, needed to fit the equity risk premium

leads to too high a risk-free rate in (14.77). However, we see that the recursive

utility specification in (14.76) potentially circumvents this problem because gc

is divided by ε rather than being multiplied by 1− γ.17

Empirical estimates of the elasticity of intertemporal substitution have been

17Philippe Weil (Weil 1989) appears to be the first to examine the equity premium and
risk-free rate puzzles in the context of recursive utility.
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obtained by regressing consumption growth, d lnC, on the real interest rate, r.

From equations (14.73) and (14.75), we see that if the risky-asset Sharpe ratio,

(µ− r) /σ, is assumed to be independent of the level of the real interest rate, r,

then the regression coeffi cient on the real interest should provide an estimate of

ε. Tests using aggregate consumption data, such as (Hall 1988) and (Campbell

and Mankiw 1989), generally find that ε is small, often indistinguishable from

zero. However, other tests based on consumption data disaggregated at the

state level (Beaudry and van Wincoop 1996) or at the household level (Attanasio

and Weber 1993) find higher estimates for ε, often around 1. From (14.76) we

see that since σ2
c/2 is small and assuming ρ is also small, a value of ε = 1 could

produce a reasonable value for the real interest rate.

14.4 Summary

The models presented in this chapter generalize the standard model of time-

separable, power utility. For particular functional forms, an individual’s con-

sumption and portfolio choice problem can be solved using the same techniques

that were previously applied to the time-separable case. For utility that displays

habit persistence, we saw that the standard coeffi cient of relative risk aversion,

(1− γ), is transformed to the expression (1− γ) /St where St < 1 is the surplus

consumption ratio. Hence, habit persistence can make individuals behave in a

very risk-averse fashion in order to avoid consuming below their habit or sub-

sistence level. As a result, these models have the potential to produce aversion

to holding risky assets suffi cient to justify a high equity risk premium.

An attraction of recursive utility is that it distinguishes between an indi-

vidual’s level of risk aversion and his elasticity of intertemporal substitution, a

distinction that is not possible with time-separable, power utility, which makes

these characteristics reciprocals of one another. As a result, recursive utility
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can permit an individual to have high risk aversion while, at the same time,

having a high elasticity of intertemporal substitution. Such a utility specifica-

tion has the potential to produce both a high equity risk premium and a low

risk-free interest rate that is present in historical data.

While recursive utility and utility displaying habit persistence might be con-

sidered nonstandard forms of utility, they are preference specifications that are

considered to be those of rational individuals. In the next chapter we study

utility that is influenced by psychological biases that might be described as ir-

rational behavior. Such biases have been identified in experimental settings

but have also been shown to be present in the actual investment behavior of

some individuals. We examine how these biases might influence the equilibrium

prices of assets.

14.5 Exercises

1. In the Constantinides habit persistence model, suppose that there are

three, rather than two, technologies. Assume that there are the risk-free

technology and two risky technologies:

dB/B = rdt

dS1/S1 = µ1dt+ σ1dz1

dS2/S2 = µ2dt+ σ2dz2

where dz1dz2 = φdt. Also assume that the parameters are such that there

is an interior solution for the portfolio weights (all portfolio weights are

positive). What would be the optimal consumption and portfolio weights

for this case?
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2. Consider an endowment economy where a representative agent maximizes

utility of the form

max

∞∑
t=0

δt
(Ct −Xt)

γ

γ

where Xt is a level of external habit and equals Xt = θCt−1, where Ct−1 is

aggregate consumption at date t− 1.

a. Write down an expression for the one-period, risk-free interest rate at date

t, Rf,t.

b. If consumption growth, Ct+1/Ct, follows an independent and identical

distribution, is the one-period riskless interest rate, Rf,t, constant over

time?

3. The following problem is based on the work of Menzly, Santos, and Veronesi

(Menzly, Santos, and Veronesi 2001). Consider a continuous-time endow-

ment economy where agents maximize utility that displays external habit

persistence. Utility is of the form

Et

[∫ ∞
0

e−ρt ln (Ct −Xt) dt

]

and aggregate consumption (dividend output) follows the lognormal process

dCt/Ct = µdt+ σdz

Define Yt as the inverse surplus consumption ratio, that is, Yt ≡ Ct
Ct−Xt

= 1
1−(Xt/Ct)

> 1. It is assumed to satisfy the mean-reverting process

dYt = k
(
Y − Yt

)
dt− α (Yt − λ) dz



14.5. EXERCISES 439

where Y > λ ≥ 1 is the long-run mean of the inverse surplus, k > 0 reflects

the speed of mean reversion, α > 0. The parameter λ sets a lower bound

for Yt, and the positivity of α (Yt − λ) implies that a shock to the aggre-

gate output (dividend-consumption) process decreases the inverse surplus

consumption ratio (and increases the surplus consumption ratio). Let Pt

be the price of the market portfolio. Derive a closed-form expression for

the price-dividend ratio of the market portfolio, Pt/Ct. How does Pt/Ct

vary with an increase in the surplus consumption ratio?

4. Consider an individual’s consumption and portfolio choice problem when

her preferences display habit persistence. The individual’s lifetime utility

satisfies

Et

[∫ T

t

e−ρsu (Cs, xs) ds

]
(1)

where Cs is date s consumption and xs is the individual’s date s level

of habit. The individual can choose among a risk-free asset that pays a

constant rate of return equal to r and n risky assets. The instantaneous

rate of return on risky asset i satisfies

dPi/Pi = µidt+ σidzi, i = 1, ..., n (2)

where dzidzj = σijdt and µi, σi, and σij are constants. Thus, the indi-

vidual’s level of wealth, W , follows the process

dW =

n∑
i=1

ωi(µi − r)W dt + (rW − Ct) dt +

n∑
i=1

ωiWσi dzi (3)

where ωi is the proportion of wealth invested in risky asset i. The habit
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level, xs, is assumed to follow the process

dx = f
(
Ct, xt

)
dt (4)

where Ct is the date t consumption that determines the individual’s habit.

a. Let J (W,x, t) be the individual’s derived utility-of-wealth function. Write

down the continuous-time Bellman equation that J (W,x, t) satisfies.

b. Derive the first-order conditions with respect to the portfolio weights, ωi.

Does the optimal portfolio proportion of risky asset i to risky asset j,

ωi/ωj , depend on the individual’s preferences? Why or why not?

c. Assume that the consumption, Ct, in equation (4) is such that the individ-

ual’s preferences display an internal habit, similar to the Constantinides

model (Constantinides 1990). Derive the first-order condition with re-

spect to the individual’s date t optimal consumption, Ct.

d. Assume that the consumption, Ct, in equation (4) is such that the indi-

vidual’s preferences display an external habit, similar to the Campbell-

Cochrane model (Campbell and Cochrane 1999). Derive the first-order

condition with respect to the individual’s date t optimal consumption, Ct.




