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Chapter 5

A Multiperiod

Discrete-Time Model of

Consumption and Portfolio

Choice

This chapter considers an expected-utility-maximizing individual’s consumption

and portfolio choices over many periods. In contrast to our previous single-

period or static models, here the intertemporal or dynamic nature of the prob-

lem is explicitly analyzed. Solving an individual’s multiperiod consumption and

portfolio choice problem is of interest in that it provides a theory for an in-

dividual’s optimal lifetime savings and investment strategies. Hence, it has

normative value as a guide for individual financial planning. In addition, just

as our single-period mean-variance portfolio selection model provided the theory

of asset demands for the Capital Asset Pricing Model, a multiperiod portfolio
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142 CHAPTER 5. A MULTIPERIOD DISCRETE-TIME MODEL

choice model provides a theory of asset demands for a general equilibrium the-

ory of intertemporal capital asset pricing. Combining this model of individuals’

preferences over consumption and securities with a model of firm production

technologies can lead to an equilibrium model of the economy that determines

asset price processes.1

In the 1920s, Frank Ramsey (Ramsey 1928) derived optimal multiperiod

consumption-savings decisions but assumed that the individual could invest in

only a single asset paying a certain return. It was not until the late 1960s that

Paul A. Samuelson (Samuelson 1969) and Robert C. Merton (Merton 1969) were

able to solve for an individual’s multiperiod consumption and portfolio choice

decisions under uncertainty, that is, where both a consumption-savings choice

and a portfolio allocation decision involving risky assets were assumed to occur

each period.2 Their solution technique involves stochastic dynamic program-

ming. While this dynamic programming technique is not the only approach

to solving problems of this type, it can sometimes be the most convenient and

intuitive way of deriving solutions.3

The model we present allows an individual to make multiple consumption

and portfolio decisions over a single planning horizon. This planning horizon,

which can be interpreted as the individual’s remaining lifetime, is composed of

many decision periods, with consumption and portfolio decisions occurring once

each period. The richness of this problem cannot be captured in the single-

period models that we presented earlier. This is because with only one period,

an investor’s decision period and planning horizon coincide. Still, the results

1 Important examples of such models were developed by John Cox, Jonathan Ingersoll, and
Stephen Ross (Cox, Ingersoll, and Ross 1985a) and Robert Lucas (Lucas 1978).

2Jan Mossin (Mossin 1968) solved for an individual’s optimal multiperiod portfolio de-
cisions but assumed the individual had no interim consumption decisions, only a utility of
terminal consumption.

3An alternative martingale approach to solving consumption and portfolio choice problems
is given by John C. Cox and Chi-Fu Huang (Cox and Huang 1989). This approach will be
presented in Chapter 12 in the context of a continuous-time consumption and portfolio choice
problem.
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from our single-period analysis will be useful because often we can transform

multiperiod models into a series of single-period ones, as will be illustrated next.

The consumption-portfolio choice model presented in this chapter assumes

that the individual’s decision interval is a discrete time period. Later in this

book, we change the assumption to make the interval instantaneous; that is,

the individual may make consumption and portfolio choices continuously. This

latter assumption often simplifies problems and can lead to sharper results.

When we move from discrete time to continuous time, continuous-time stochas-

tic processes are used to model security prices.

The next section outlines the assumptions of the individual’s multiperiod

consumption-portfolio problem. Perhaps the strongest assumption that we

make is that utility of consumption is time separable.4 The following section

shows how this problem can be solved. It introduces an important technique

for solving multiperiod decision problems under uncertainty, namely, stochastic

dynamic programming. The beauty of this technique is that decisions over a

multiperiod horizon can be broken up into a series of decisions over a single-

period horizon. This allows us to derive the individual’s optimal consumption

and portfolio choices by starting at the end of the individual’s planning horizon

and working backwards toward the present. In the last section, we complete

our analysis by deriving explicit solutions for the individual’s consumption and

portfolio holdings when utility is assumed to be logarithmic.

5.1 Assumptions and Notation of the Model

Consider an environment in which an individual chooses his level of consumption

and the proportions of his wealth invested in n risky assets plus a risk-free

4Time-inseparable utility, where current utility can depend on past or expected future
consumption, is discussed in Chapter 14.
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asset. As was the case in our single-period models, it is assumed that the

individual takes the stochastic processes followed by the prices of the different

assets as given. The implicit assumption is that security markets are perfectly

competitive in the sense that the (small) individual is a price-taker in security

markets. An individual’s trades do not impact the price (or the return) of

the security. For most investors trading in liquid security markets, this is a

reasonably realistic assumption. In addition, it is assumed that there are no

transactions costs or taxes when buying or selling assets, so that security markets

can be described as “frictionless.”

An individual is assumed to make consumption and portfolio choice decisions

at the start of each period during a T -period planning horizon. Each period is

of unit length, with the initial date being 0 and the terminal date being T .5

5.1.1 Preferences

The individual is assumed to maximize an expected utility function defined

over consumption levels and a terminal bequest. Denote consumption at date

t as Ct, t = 0, ..., T − 1, and the terminal bequest as WT , where Wt indicates

the individual’s level of wealth at date t. A general form for a multiperiod

expected utility function would be E0 [Υ (C0, C1, ..., CT−1,WT )], where we could

simply assume that Υ is increasing and concave in its arguments. However,

as a starting point, we will assume that Υ has the following time-separable, or

additively separable, form:

E0 [Υ (C0, C1, ..., CT−1,WT )] = E0

[
T−1∑
t=0

U (Ct, t) +B (WT , T )

]
(5.1)

5The following presentation borrows liberally from Samuelson (Samuelson 1969) and
Robert C. Merton’s unpublished MIT course 15.433 class notes "Portfolio Theory and Capital
Markets."
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where U and B are assumed to be increasing, concave functions of consumption

and wealth, respectively. Equation (5.1) restricts utility at date t, U (Ct, t), to

depend only on consumption at that date and not previous levels of consump-

tion or expected future levels of consumption. While this is the traditional

assumption in multiperiod models, in later chapters we loosen this restriction

and investigate utility formulations that are not time separable.6

5.1.2 The Dynamics of Wealth

At date t, the value of the individual’s tangible wealth held in the form of assets

equals Wt. In addition, the individual is assumed to receive wage income of

yt.7 This beginning-of-period wealth and wage income are divided between

consumption and savings, and then savings is allocated between n risky assets

as well as a risk-free asset. Let Rit be the random return on risky asset i over

the period starting at date t and ending at date t+1. Also let Rft be the return

on an asset that pays a risk-free return over the period starting at date t and

ending at date t+ 1. Then if the proportion of date t saving allocated to risky

asset i is denoted ωit, we can write the evolution of the individual’s tangible

wealth as

Wt+1 = (Wt + yt − Ct) Rft +
n∑
i=1

ωit (Rit −Rft)
)

(5.2)

= StRt

where St ≡ Wt + yt − Ct is the individual’s savings at date t, and Rt ≡ Rft +∑n
i=1 ωit (Rit −Rft) is the total return on the individual’s invested wealth over

6Dynamic programming, the solution technique presented in this chapter, can also be
applied to consumption and portfolio choice problems where an individual’s utility is time
inseparable.

7Wage income can be random. The present value of wage income, referred to as human
capital, is assumed to be a nontradeable asset. The individual can rebalance how his financial
wealth is allocated among risky assets but cannot trade his human capital.
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Figure 5.1: Multiperiod Decisions

the period from date t to t+ 1.

Note that we have not restricted the distribution of asset returns in any

way. In particular, the return distribution of risky asset i could change over

time, so that the distribution of Rit could differ from the distribution of Riτ

for t 6= τ . Moreover, the one-period risk-free return could be changing, so

that Rft 6= Rfτ . Asset distributions that vary from one period to the next

mean that the individual faces changing investment opportunities. Hence, in a

multiperiod model, the individual’s current consumption and portfolio decisions

may be influenced not only by the asset return distribution for the current

period, but also by the possibility that asset return distributions could change

in the future.

The information and decision variables available to the individual at each

date are illustrated in Figure 5.1. At date t, the individual knows her wealth

at the start of the period, Wt; her wage income received at date t, yt; and
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the risk-free interest rate for investing or borrowing over the period from date

t to date t + 1, Rft. Conditional on information at date t, denoted by It,

she also knows the distributions of future one-period risk-free rates and wage

income, FRfτ |It and Fyτ |It, respectively, for dates τ = t+ 1, ..., T − 1. Lastly,

the individual also knows the date t conditional distributions of the risky-asset

returns for dates τ = t, ..., T − 1, given by FRiτ |It. Date t information, It,

includes all realizations of wage income and risk-free rates for all dates up until

and including date t. It also includes all realizations of risky-asset returns for

all dates up until and including date t−1. Moreover, It could include any other

state variables known at date t that affect the distributions of future wages, risk-

free rates, and risky-asset returns. Based on this information, the individual’s

date t decision variables are consumption, Ct, and the portfolio weights for the

n risky assets, {ωit}, for i = 1, ..., n.

5.2 Solving the Multiperiod Model

We begin by defining an important concept that will help us simplify the solu-

tion to this multiperiod optimization problem. Let J (Wt, t) denote the derived

utility-of-wealth function. It is defined as follows:

J (Wt, It, t) ≡ max
Cs,{ωis},∀s,i

Et

[
T−1∑
s=t

U (Cs, s) +B (WT , T )

]
(5.3)

where “max” means to choose the decision variables Cs and {ωis} for s =

t, t + 1, ..., T − 1 and i = 1, ..., n so as to maximize the expected value of the

term in brackets. Note that J is a function of current wealth and all information

up until and including date t. This information could reflect state variables

describing a changing distribution of risky-asset returns and/or a changing risk-

free interest rate, where these state variables are assumed to be exogenous to
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the individual’s consumption and portfolio choices. However, by definition J is

not a function of the individual’s current or future decision variables, since they

are assumed to be set to those values that maximize lifetime expected utility.

Hence, J can be described as a “derived”utility-of-wealth function.

We will solve the individual’s consumption and portfolio choice problem us-

ing backward dynamic programming. This entails considering the individual’s

multiperiod planning problem starting from her final set of decisions because,

with one period remaining in the individual’s planning horizon, the multiperiod

problem has become a single-period one. We know from Chapter 4 how to

solve for consumption and portfolio choices in a single-period context. Once we

characterize the last period’s solution for some given wealth and distribution of

asset returns faced by the individual at date T −1, we can solve for the individ-

ual’s optimal decisions for the preceding period, those decisions made at date

T − 2. This procedure is continued until we can solve for the individual’s opti-

mal decisions at the current date 0. As will be clarified next, by following this

recursive solution technique, the individual’s current decisions properly account

for future optimal decisions that she will make in response to the evolution of

uncertainty in asset returns and labor income.

5.2.1 The Final Period Solution

From the definition of J , note that8

J (WT , T ) = ET [B (WT , T )] = B (WT , T ) (5.4)

Now working backwards, consider the individual’s optimization problem when,

at date T − 1, she has a single period left in her planning horizon.

8To keep notation manageable, we suppress making information, It, an explicit argument of
the indirect utility function. We use the shorthand notation J (Wt, t) to refer to J (Wt, It, t).
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J (WT−1, T − 1) = max
CT−1,{ωi,T−1}

ET−1 [U (CT−1, T − 1) +B (WT , T )](5.5)

= max
CT−1,{ωi,T−1}

U (CT−1, T − 1) + ET−1 [B (WT , T )]

To clarify howWT depends explicitly on CT−1 and {ωi,T−1}, substitute equation

(5.2) for t = T − 1 into equation (5.5):

J (WT−1, T − 1) = max
CT−1,{ωi,T−1}

U (CT−1, T − 1) + ET−1 [B (ST−1RT−1, T )]

(5.6)

where it should be recalled that ST−1 ≡ WT−1 + yT−1 − CT−1 and RT−1 ≡

Rf,T−1 +
∑n
i=1 ωi,T−1 (Ri,T−1 −Rf,T−1). Equation (5.6) is a standard single-

period consumption-portfolio choice problem. To solve it, we differentiate with

respect to each decision variable, CT−1 and {ωi,T−1}, and set the resulting

expressions equal to zero:

UC (CT−1, T − 1)− ET−1 [BW (WT , T )RT−1] = 0 (5.7)

ET−1 [BW (WT , T ) (Ri,T−1 −Rf,T−1)] = 0, i = 1, ..., n (5.8)

where the subscripts on U and B denote partial differentiation.9 Using the

results in (5.8), we see that (5.7) can be rewritten as

UC (CT−1, T − 1) = ET−1

[
BW (WT , T )

(
Rf,T−1 +

n∑
i=1

ωi,T−1 (Ri,T−1 −Rf,T−1)

)]
= Rf,T−1ET−1 [BW (WT , T )] (5.9)

9Note that we apply the chain rule when differentiating B (WT , T ) with respect to
CT−1 since WT =ST−1RT−1 depends on CT−1 through ST−1.
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Conditions (5.8) and (5.9) represent n + 1 equations that determine the opti-

mal choices of C∗T−1 and
{
ω∗i,T−1

}
. They are identical to the single-period

model conditions (4.6) and (4.10) derived in the previous chapter but with the

utility of bequest function, B, replacing the end-of-period utility function, U .

If we substitute these optimal decision variables back into equation (5.6) and

differentiate totally with respect to WT−1, we have

JW = UC
∂C∗T−1

∂WT−1
+ ET−1

[
BWT

·
(

dWT

dWT−1

)]
= UC

∂C∗T−1

∂WT−1
+ ET−1

[
BWT

· ∂WT

∂WT−1
+

n∑
i=1

∂WT

∂ω∗i,T−1

∂ω∗i,T−1

∂WT−1

+
∂WT

∂C∗T−1

∂C∗T−1

∂WT−1

)]
= UC

∂C∗T−1

∂WT−1
+ ET−1

[
BWT

·
n∑
i=1

[Ri,T−1 −Rf,T−1]ST−1

∂ω∗i,T−1

∂WT−1

+RT−1

(
1−

∂C∗T−1

∂WT−1

))]
(5.10)

Using the first-order condition (5.8), ET−1 [BWT
· (Ri,T−1 −Rf,T−1)] = 0,

as well as (5.9), UC = Rf,T−1ET−1 [BWT
], we see that (5.10) simplifies to JW =

Rf,T−1ET−1 [BWT
]. Using (5.9) once again, this can be rewritten as

JW (WT−1, T − 1) = UC
(
C∗T−1, T − 1

)
(5.11)

which is known as the “envelope condition.”It says that the individual’s optimal

policy equates her marginal utility of current consumption, UC , to her marginal

utility of wealth (future consumption).
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5.2.2 Deriving the Bellman Equation

Having solved the individual’s problem with one period to go in her planning

horizon, we next consider her optimal consumption and portfolio choices with

two periods remaining, at date T − 2. The individual’s objective at this date is

J (WT−2, T − 2) = maxU (CT−2, T − 2) + ET−2 [U (CT−1, T − 1)

+B (WT , T )] (5.12)

The individual must maximize expression (5.12) by choosing CT−2 as well as

{ωi,T−2}. However, note that she wishes to maximize an expression that is an

expectation over utilities U (CT−1, T − 1) + B (WT , T ) that depend on future

decisions, namely, CT−1 and {ωi,T−1}. What should the individual assume

these future values of CT−1 and {ωi,T−1} to be? The answer comes from the

Principle of Optimality. It states:

An optimal set of decisions has the property that given an initial

decision, the remaining decisions must be optimal with respect to

the outcome that results from the initial decision.

The “max” in (5.12) is over all remaining decisions, but the Principle of

Optimality says that whatever decision is made in period T − 2, given the

outcome, the remaining decisions (for period T −1) must be optimal (maximal).

In other words,

max
{(T−2),(T−1)}

(Y ) = max
{T−2}

[
max

{T−1,| outcome from (T−2)}
(Y )

]
(5.13)

This principle allows us to rewrite (5.12) as
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J (WT−2, T − 2) = max
CT−2,{ωi,T−2}

{U (CT−2, T − 2) + (5.14)

ET−2

[
max

CT−1,{ωi,T−1}
ET−1 [U (CT−1, T − 1) +B (WT , T )]

]}

Then, using the definition of J (WT−1, T − 1) from (5.5), equation (5.14) can

be rewritten as

J (WT−2, T − 2) = max
CT−2,{ωi,T−2}

U (CT−2, T − 2) + ET−2 [J (WT−1, T − 1)]

(5.15)

The recursive condition (5.15) is known as the (Richard) Bellman equation

(Bellman 1957). It characterizes the individual’s objective at date T−2. What

is important about this characterization is that if we compare it to equation

(5.5), the individual’s objective at date T−1, the two problems are quite similar.

The only difference is that in (5.15) we replace the known function of wealth next

period, B, with another (known in principle) function of wealth next period, J .

But the solution to (5.15) will be of the same form as that for (5.5).10

5.2.3 The General Solution

Thus, the optimality conditions for (5.15) are

10Using the envelope condition, it can be shown that the concavity of U and B ensures
that J (W, t) is a concave and continuously differentiable function of W . Hence, an interior
solution to the second-to-last period problem exists.
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UC
(
C∗T−2, T − 2

)
= ET−2 [JW (WT−1, T − 1)RT−2]

= Rf,T−2ET−2 [JW (WT−1, T − 1)]

= JW (WT−2, T − 2) (5.16)

ET−2 [Ri,T−2JW (WT−1, T − 1)] = Rf,T−2ET−2 [JW (WT−1, T − 1)] ,

i = 1, ..., n (5.17)

Based on the preceding pattern, inductive reasoning implies that for any t =

0, 1, ..., T − 1, we have the Bellman equation:

J (Wt, t) = max
Ct,{ωi,t}

U (Ct, t) + Et [J (Wt+1, t+ 1)] (5.18)

and, therefore, the date t optimality conditions are

UC (C∗t , t) = Et [JW (Wt+1, t+ 1)Rt]

= Rf,tEt [JW (Wt+1, t+ 1)]

= JW (Wt, t) (5.19)

Et [Ri,tJW (Wt+1, t+ 1)] = Rf,tEt [JW (Wt+1, t+ 1)] , i = 1, ..., n (5.20)

The insights of the multiperiod model conditions (5.19) and (5.20) are similar

to those of a single-period model from Chapter 4. The individual chooses to-
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day’s consumption such that the marginal utility of current consumption equals

the derived marginal utility of wealth (the marginal utility of future consump-

tion). Furthermore, the portfolio weights should be adjusted to equate all

assets’expected marginal utility-weighted asset returns. However, solving for

the individual’s actual consumption and portfolio weights at each date, C∗t and

{ωi,t}, t = 0, ..., T − 1, is more complex than for a single-period model. The

conditions’ dependence on the derived utility-of-wealth function implies that

they depend on future contingent investment opportunities (the distributions

of future asset returns (Ri,t+j , Rf,t+j , j ≥ 1), future income flows, yt+j , and

possibly, states of the world that might affect future utilities (U (·, t+ j)).

Solving this system involves starting from the end of the planning horizon

and dynamically programing backwards toward the present. Thus, for the last

period, T , we know that J (WT , T ) = B (WT , T ). As we did previously, we

substitute B (WT , T ) for J (WT , T ) in conditions (5.18) to (5.20) for date T − 1

and solve for J (WT−1, T − 1). This is then substituted into conditions (5.18)

to (5.20) for date T − 2 and one then solves for J (WT−2, T − 2). If we proceed

in this recursive manner, we eventually obtain J (W0, 0) and the solution is

complete. These steps are summarized in the following table.

Step Action

1 Construct J (WT , T ).

2 Solve for C∗T−1 and {ωi,T−1}, i = 1, ..., n.

3 Substitute the decisions in step 2 to construct J (WT−1, T − 1).

4 Solve for C∗T−2 and {ωi,T−2}, i = 1, ..., n.

5 Substitute the decisions in step 4 to construct J (WT−2, T − 2).

6 Repeat steps 4 and 5 for date T − 3.

7 Repeat step 6 for all prior dates until date 0 is reached.

By following this recursive procedure, we find that the optimal policy will
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be of the form11

C∗t = g [Wt, yt, It, t] (5.21)

ω∗it = h [Wt, yt, It, t] (5.22)

Deriving analytical expressions for the functions g and h is not always possible,

in which case numerical solutions satisfying the first-order conditions at each

date can be computed. However, for particular assumptions regarding the form

of utility, wage income, and the distribution of asset returns, such explicit solu-

tions may be possible. The next section considers an example where this is the

case.

5.3 Example Using Log Utility

To illustrate how solutions of the form (5.21) and (5.22) can be obtained, con-

sider the following example where the individual has log utility and no wage

income. Assume that U (Ct, t) ≡ δt ln [Ct], B (WT , T ) ≡ δT ln [WT ], and yt ≡ 0

∀ t, where δ = 1
1+ρ and ρ is the individual’s subjective rate of time preference.

Now at date T − 1, using condition (5.7), we have

11When asset returns are serially correlated, that is, the date t distribution of asset returns
depends on realized asset returns from periods prior to date t, the decision rules in (5.21) and
(5.22) may depend on this prior, conditioning information. They will also depend on any other
state variables known at time t and included in the date t information set It. This, however,
does not affect the general solution technique. These prior asset returns are exogenous state
variables that influence only the conditional expectations in the optimality conditions (5.19)
and (5.20).
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UC (CT−1, T − 1) = ET−1 [BW (WT , T )RT−1] (5.23)

δT−1 1

CT−1
= ET−1

[
δT
RT−1

WT

]
= ET−1

[
δT

RT−1

ST−1RT−1

]
=

δT

ST−1
=

δT

WT−1 − CT−1

or

C∗T−1 =
1

1 + δ
WT−1 (5.24)

It is noteworthy that consumption for this log utility investor is a fixed

proportion of wealth and is independent of investment opportunities, that is,

independent of the distribution of asset returns. This is reminiscent of the result

derived in Chapters 1 and 4: the income and substitution effects from a change

in investment returns exactly offset each other for the log utility individual.

Turning to the first-order conditions with respect to the portfolio weights,

conditions (5.8) imply

ET−1 [BWT
Ri,T−1] = Rf,T−1ET−1 [BWT

] , i = 1, ..., n

δTET−1

[
Ri,T−1

ST−1RT−1

]
= δTRf,T−1ET−1

[
1

ST−1RT−1

]
ET−1

[
Ri,T−1

RT−1

]
= Rf,T−1ET−1

[
1

RT−1

]
(5.25)

Furthermore, for the case of log utility we see that equation (5.25) equals unity,

since from (5.9) we have
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UC (CT−1, T − 1) = Rf,T−1ET−1 [BW (WT , T )]

δT−1

C∗T−1

= Rf,T−1ET−1

[
δT

1

ST−1RT−1

]
1 =

δC∗T−1Rf,T−1

WT−1 − C∗T−1

ET−1

[
1

RT−1

]
1 = Rf,T−1ET−1

[
1

RT−1

]
(5.26)

where we have substituted equation (5.24) in going from the third to the fourth

line of (5.26). While we would need to make specific assumptions regarding the

distribution of asset returns in order to derive the portfolio weights {ω∗i,T−1}

satisfying (5.25), note that the conditions in (5.25) are rather special in that

they do not depend onWT−1, CT−1, or δ, but only on the particular distribution

of asset returns that one assumes. The implication is that a log utility investor

chooses assets in the same relative proportions, independent of his initial wealth.

This, of course, is a consequence of log utility being a special case of constant

relative-risk-aversion utility.12

The next step is to solve for J (WT−1, T − 1) by substituting in the date

T − 1 optimal consumption and portfolio rules into the individual’s objective

function. Denoting R∗t ≡ Rf,t +
∑n
i=1 ω

∗
it (Rit −Rft) as the individual’s total

portfolio return when assets are held in the optimal proportions, we have

12Recall from section 1.3 that a one-period investor with constant relative risk aversion
places constant proportions of wealth in a risk-free and a single risky asset.
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J (WT−1, T − 1) = δT−1 ln
[
C∗T−1

]
+ δTET−1

[
ln
[
R∗T−1

(
WT−1 − C∗T−1

)]]
= δT−1 (− ln [1 + δ] + ln [WT−1]) +

δT
(
ET−1

[
ln
[
R∗T−1

]]
+ ln

[
δ

1 + δ

]
+ ln [WT−1]

)
= δT−1 [(1 + δ) ln [WT−1] +HT−1] (5.27)

where HT−1 ≡ − ln [1 + δ] + δ ln
[

δ
1+δ

]
+ δET−1

[
ln
[
R∗T−1

]]
. Notably, from

equation (5.25) we saw that ω∗i,T−1 did not depend on WT−1, and therefore

R∗T−1 and HT−1 do not depend on WT−1.

Next, let’s move back one more period and consider the individual’s optimal

consumption and portfolio decisions at time T − 2. From equation (5.15) we

have

J (WT−2, T − 2) = max
CT−2,{ωi,T−2}

U (CT−2, T − 2) + ET−2 [J (WT−1, T − 1)]

= max
CT−2,{ωi,T−2}

δT−2 ln [CT−2]

+δT−1ET−2 [(1 + δ) ln [WT−1] +HT−1] (5.28)

Thus, using (5.16), the optimality condition for consumption is

UC
(
C∗T−2, T − 2

)
= ET−2 [JW (WT−1, T − 1)RT−2]

δT−2

CT−2
= (1 + δ) δT−1ET−2

[
RT−2

ST−2RT−2

]
=

(1 + δ) δT−1

WT−2 − CT−2
(5.29)

or
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C∗T−2 =
1

1 + δ + δ2WT−2 (5.30)

Using (5.17), we then see that the optimality conditions for {ω∗i,T−2} turn out

to be of the same form as at T − 1:

ET−2

[
Ri,T−2

R∗T−2

]
= Rf,T−2ET−2

[
1

R∗T−2

]
, i = 1, ..., n (5.31)

and, as in the case of T − 1, equation (5.31) equals unity, since

UC (CT−2, T − 2) = Rf,T−2ET−2 [JW (WT−1, T − 1)]

δT−2

C∗T−2

= Rf,T−2δ
T−1ET−2

[
1 + δ

ST−2RT−2

]
1 =

δ (1 + δ)C∗T−2Rf,T−2

WT−2 − C∗T−2

ET−2

[
1

RT−2

]
1 = Rf,T−2ET−2

[
1

RT−2

]
(5.32)

Recognizing the above pattern, we see that the optimal consumption and

portfolio rules for any prior date, t, are

C∗t =
1

1 + δ + ...+ δT−t
Wt =

1− δ
1− δT−t+1

Wt (5.33)

Et

[
Ri,t
R∗t

]
= RftEt

[
1

R∗t

]
= 1, i = 1, ..., n (5.34)

Hence, we find that the consumption and portfolio rules are separable for

a log utility individual. Equation (5.33) shows that the consumption-savings

decision does not depend on the distribution of asset returns. Moreover, equa-

tion (5.34) indicates that the optimal portfolio proportions depend only on the

distribution of one-period returns and not on the distribution of asset returns

beyond the current period. This is described as myopic behavior because in-



160 CHAPTER 5. A MULTIPERIOD DISCRETE-TIME MODEL

vestment allocation decisions made by the multiperiod log investor are identical

to those of a one-period log investor. Hence, the log utility individual’s cur-

rent period decisions are independent of the possibility of changing investment

opportunities in future periods. It should be emphasized that these indepen-

dence results are highly specific to the log utility assumption and do not occur

with other utility functions. In general, it will be optimal for the individual to

choose today’s portfolio in a way that hedges against possible changes in tomor-

row’s investment opportunities. Such hedging demands for assets will become

transparent when in Chapter 12 we consider the individual’s consumption and

portfolio choice problem in a continuous-time setting.

The consumption rule (5.33) shows that consumption is positive whenever

wealth is. Since utility of consumption is undefined for logarithmic (or any

other constant relative-risk-aversion) utility when consumption is nonpositive,

what ensures that wealth is always positive? The individual’s optimal portfolio

choices will reflect this concern. While this example has not specified a specific

distribution for asset returns, portfolio decisions in a discrete-time model can

be quite sensitive to the requirement that wealth exceed zero. For example,

suppose that the distribution of a risky asset’s return had no lower bound, as

would be the case if the distribution were normal. With logarithmic utility,

the optimality conditions (5.34) imply that the individual avoids holding any

normally distributed risky asset, since there is positive probability that a large

negative return would make wealth negative as well.13 In Chapter 12, we

revisit the individual’s intertemporal consumption and portfolio choices in a

continuous-time environment. There we will see that the individual’s ability

to continuously reallocate her portfolio can lead to fundamental differences in

asset demands. Individuals can maintain positive wealth even though they

13Note that this would not be the case for a risky asset having a return distribution that is
bounded at zero, such as the lognormal distribution.
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hold assets having returns that are instantaneously normally distributed. The

intuition behind this difference in the discrete- versus continuous-time results

is that the probability of wealth becoming negative decreases when the time

interval between portfolio revisions decreases.

5.4 Summary

An individual’s optimal strategy for making lifetime consumption-savings and

portfolio allocation decisions is a topic having practical importance to financial

planners. This chapter’s analysis represents a first step in formulating and de-

riving a lifetime financial plan. We showed that an individual could approach

this problem by a backward dynamic programming technique that first consid-

ered how decisions would be made when he reached the end of his planning

horizon. For prior periods, consumption and portfolio decisions were derived

using the recursive Bellman equation which is based on the concept of a derived

utility of wealth function. The multiperiod planning problem was transformed

into a series of easier-to-solve one-period problems. While the consumption-

portfolio choice problem in this chapter assumed that lifetime utility was time

separable, in future chapters we show that the Bellman equation solution tech-

nique often can apply to cases of time-inseparable lifetime utility.

Our general solution technique was illustrated for the special case of an

individual having logarithmic utility and no wage income. It turned out that

this individual’s optimal consumption decision was to consume a proportion

of wealth each period, where the proportion was a function of the remaining

periods in the individual’s planning horizon but not of the current or future

distributions of asset returns. In other words, future investment opportunities

did not affect the individual’s current consumption-savings decision. Optimal

portfolio allocations were also relatively simple because they depended only on
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the current period’s distribution of asset returns.

Deriving an individual’s intertemporal consumption and portfolio decisions

has value beyond the application to financial planning. By summing all individ-

uals’demands for consumption and assets, a measure of aggregate consumption

and asset demands can be derived. When coupled with a theory of production

technologies and asset supplies, these aggregate demands can provide the foun-

dation for a general equilibrium theory of asset pricing. We turn to this topic

in the next chapter.

5.5 Exercises

1. Consider the following consumption and portfolio choice problem. As-

sume that U (Ct, t) = δt
[
aCt − bCt2

]
, B (WT , T ) = 0, and yt 6= 0, where

δ = 1
1+ρ and ρ ≥ 0 is the individual’s subjective rate of time preference.

Further, assume that n = 0 so that there are no risky assets but there is a

single-period riskless asset yielding a return of Rft = 1/δ that is constant

each period (equivalently, the risk-free interest rate rf = ρ). Note that

in this problem labor income is stochastic and there is only one (riskless)

asset for the individual consumer-investor to hold. Hence, the individual

has no portfolio choice decision but must decide only what to consume

each period. In solving this problem, assume that the individual’s opti-

mal level of consumption remains below the “bliss point”of the quadratic

utility function, that is, C∗t <
1
2a/b,∀t.

a. Write down the individual’s wealth accumulation equation from period t

to period t+ 1.

b. Solve for the individual’s optimal level of consumption at date T − 1 and

evaluate J (WT−1, T − 1). Hint: this is trivial.
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c. Continue to solve the individual’s problem at date T −2, T −3, and so on

- and notice the pattern that emerges. From these results, solve for the

individual’s optimal level of consumption for any arbitrary date, T − t, in

terms of the individual’s expected future levels of income.

2. Consider the consumption and portfolio choice problem with power utility

U (Ct, t) ≡ δtCγt /γ and a power bequest function B (WT , T ) ≡ δTW γ
T /γ.

Assume there is no wage income ( yt ≡ 0 ∀ t) and a constant risk-free

return equal to Rft = Rf . Also, assume that n = 1 and the return of the

single risky asset, Rrt, is independently and identically distributed over

time. Denote the proportion of wealth invested in the risky asset at date

t as ωt.

a. Derive the first-order conditions for the optimal consumption level and

portfolio weight at date T − 1, C∗T−1 and ω∗T−1, and give an explicit

expression for C∗T−1.

b. Solve for the form of J (WT−1, T − 1) .

c. Derive the first-order conditions for the optimal consumption level and

portfolio weight at date T − 2, C∗T−2 and ω∗T−2, and give an explicit

expression for C∗T−2.

d. Solve for the form of J (WT−2, T − 2). Based on the pattern for T − 1

and T − 2, provide expressions for the optimal consumption and portfolio

weight at any date T − t, t = 1, 2, 3, ... .

3. Consider the multiperiod consumption and portfolio choice problem

max
Cs,ωs∀s

Et

[
T−1∑
s=t

U (Cs, s) +B (WT , T )

]
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Assume negative exponential utility U (Cs, s) ≡ −δse−bCs and a bequest

function B (WT , T ) ≡ −δT e−bWT where δ = e−ρand ρ > 0 is the (contin-

uously compounded) rate of time preference. Assume there is no wage

income ( ys ≡ 0 ∀ s) and a constant risk-free return equal to Rfs = Rf .

Also, assume that n = 1 and the return of the single risky asset, Rrs,

has an identical and independent normal distribution of N
(
R, σ2

)
each

period. Denote the proportion of wealth invested in the risky asset at

date s as ωs.

a. Derive the optimal portfolio weight at date T−1, ω∗T−1. Hint: it might be

easiest to evaluate expectations in the objective function prior to taking

the first-order condition.

b. Solve for the optimal level of consumption at date T − 1, C∗T−1. C∗T−1

will be a function of WT−1, b, ρ, Rf , R, and σ2.

c. Solve for the indirect utility function of wealth at date T−1, J (WT−1, T − 1).

d. Derive the optimal portfolio weight at date T − 2, ω∗T−2.

e. Solve for the optimal level of consumption at date T − 2, C∗T−2.

4. An individual faces the following consumption and portfolio choice prob-

lem:

max
Ct,ωt∀t

E0

[
T−1∑
t=0

δt ln [Ct] + δT ln [WT ]

]
where each period the individual can choose between a risk-free asset

paying a time-varying return of Rft over the period from t to t + 1 and
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a single risky asset. The individual receives no wage income. The risky

asset’s return over the period from t to t+ 1 is given by

Rrt =

 (1 + ut)Rft with probability 1
2

(1 + dt)Rft with probability 1
2

where ut > 0 and −1 < dt < 0. Let ωt be the individual’s proportion

of wealth invested in the risky asset at date t. Solve for the individual’s

optimal portfolio weight ω∗t for t = 0, ..., T − 1.
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Chapter 6

Multiperiod Market

Equilibrium

The previous chapter showed how stochastic dynamic programming can be used

to solve for an individual’s optimal multiperiod consumption and portfolio de-

cisions. In general, deriving an individual’s decision rules for particular forms

of utility and distributions of asset returns can be complex. However, even

though simple solutions for individuals’decision rules may not exist, a number

of insights regarding equilibrium asset pricing relationships often can be derived

for an economy populated by such optimizing individuals. This is the topic of

the first section of this chapter. Similar to what was shown in the context

of Chapter 4’s single-period consumption-portfolio choice model, here we find

that an individual’s first-order conditions from the multiperiod problem can be

reinterpreted as equilibrium conditions for asset prices. This leads to empiri-

cally testable implications even when analytical expressions for the individuals’

lifetime consumption and portfolio decisions cannot be derived. As we shall

see, these equilibrium implications generalize those that we derived earlier for a

167
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single-period environment.

In the second section, we consider an important and popular equilibrium

asset pricing model derived by Nobel laureate Robert E. Lucas (Lucas 1978).

It is an endowment economy model of infinitely lived, representative individu-

als. The assumptions of the model, which determine individuals’consumption

process, are particularly convenient for deriving the equilibrium price of the

market portfolio of all assets. As will be shown, the model’s infinite horizon

gives rise to the possibility of speculative bubbles in asset prices. The last sec-

tion of the chapter examines the nature of rational bubbles and considers what

conditions could give rise to these nonfundamental price dynamics.

6.1 Asset Pricing in the Multiperiod Model

Recall that the previous chapter’s Samuelson-Merton model of multiperiod con-

sumption and portfolio choices assumed that an individual’s objective was

max
Cs,{ωis},∀s,i

Et

[
T−1∑
s=t

U (Cs, s) +B (WT , T )

]
(6.1)

and that this problem of maximizing time-separable, multiperiod utility could

be transformed into a series of one-period problems where the individual solved

the Bellman equation:

J (Wt, t) = max
Ct,{ωi,t}

U (Ct, t) + Et [J (Wt+1, t+ 1)] (6.2)

This led to the first-order conditions

UC (C∗t , t) = Rf,tEt [JW (Wt+1, t+ 1)]

= JW (Wt, t) (6.3)
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Et [RitJW (Wt+1, t+ 1)] = Rf,tEt [JW (Wt+1, t+ 1)] , i = 1, ..., n (6.4)

By making specific assumptions regarding the form of the utility function,

the nature of wage income, and the distributions of asset returns at each date,

explicit formulas for C∗t and ω
∗
it may be derived using backward dynamic pro-

gramming. The previous chapter provided an example of such a derivation for

the case of an individual with log utility and no wage income. However, under

more general assumptions, the multiperiod model may have equilibrium impli-

cations even when analytical expressions for consumption and portfolio choices

are not possible. This is the topic that we now consider.

6.1.1 The Multi-Period Pricing Kernel

Let us illustrate how equilibrium asset pricing implications can be derived from

the individual’s envelope condition (6.3), UC (C∗t , t) = JW (Wt, t). This condi-

tion conveys that under an optimal policy, the marginal value of financial wealth

equals the marginal utility of consumption. Substituting the envelope condition

evaluated at date t+ 1 into the right-hand side of the first line of (6.3), we have

UC (C∗t , t) = Rf,tEt [JW (Wt+1, t+ 1)]

= Rf,tEt
[
UC
(
C∗t+1, t+ 1

)]
(6.5)

Furthermore, substituting (6.4) into (6.3) and, again, using the envelope condi-

tion at date t+ 1 allows us to write
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UC (C∗t , t) = Et [RitJW (Wt+1, t+ 1)]

= Et
[
RitUC

(
C∗t+1, t+ 1

)]
(6.6)

or

1 = Et [mt,t+1Rit]

= Rf,tEt [mt,t+1] (6.7)

where mt,t+1 ≡ UC
(
C∗t+1, t+ 1

)
/UC (C∗t , t) is the stochastic discount factor, or

pricing kernel, between dates t and t + 1. Equation (6.7) indicates that our

previous asset pricing results derived from a single-period consumption-portfolio

choice problem, such as equation (4.18), hold on a period-by-period basis even

when we allow the consumption-portfolio choice problem to be a more complex

multiperiod one. As before, we can interpret (6.6) and (6.7) as showing that

the marginal rate of substitution between consumption at any two dates, such

as t and t + 1, equals the marginal rate of transformation. Consumption at

date t can be “transformed” into consumption at date t + 1 by investing in

the riskless asset having return Rf,t or by investing in a risky asset having the

random return Rit.

A similar relationship can be derived for asset returns for any holding period,

not just one of unit length. Note that if equation (6.6) for risky asset j is

updated one period, UC
(
C∗t+1, t+ 1

)
= Et+1

[
Rj,t+1UC

(
C∗t+2, t+ 2

)]
, and this

is then substituted into the right-hand side of the original (6.6), one obtains

UC (C∗t , t) = Et
[
RitEt+1

[
Rj,t+1UC

(
C∗t+2, t+ 2

)]]
= Et

[
RitRj,t+1UC

(
C∗t+2, t+ 2

)]
(6.8)
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or

1 = Et [RitRj,t+1mt,t+2] (6.9)

wheremt,t+2 ≡ UC
(
C∗t+2, t+ 2

)
/UC (C∗t , t) is the marginal rate of substitution,

or the stochastic discount factor, between dates t and t + 2. In the preceding

expressions, RitRj,t+1 is the return from a trading strategy that first invests in

asset i over the period from t to t + 1 then invests in asset j over the period

t+ 1 to t+ 2. Of course, i could equal j but need not, in general. By repeated

substitution, (6.9) can be generalized to

1 = Et [Rt,t+kmt,t+k] (6.10)

where mt,t+k ≡ UC
(
C∗t+k, t+ k

)
/UC (C∗t , t) and Rt,t+k is the return from any

trading strategy involving multiple assets over the period from dates t to t+k.

Equation (6.10) says that optimizing consumers equate their expected mar-

ginal utilities across all time periods and all states. Its equilibrium implication

is that the stochastic discount relationship holds for multiperiod returns gener-

ated from any particular trading strategy. This result implies that empirical

tests of multiperiod, time-separable utility models using consumption data and

asset returns can be constructed using a wide variety of investment returns and

holding periods. Expressions such as (6.10) represent moment conditions that

are often tested using generalized method-of-moments techniques.1 As men-

tioned in Chapter 4, such consumption-based tests typically reject models that

assume standard forms of time-separable utility. This has motivated a search

for alternative utility specifications, a topic we will revisit in future chapters.

Lets us now consider a general equilibrium structure for this multiperiod

consumption-portfolio choice model.

1See Lars Hansen and Kenneth Singleton (Hansen and Singleton 1983) and Lars Hansen
and Ravi Jagannathan (Hansen and Jagannathan 1991).
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6.2 The Lucas Model of Asset Pricing

The Lucas model (Lucas 1978) derives the equilibrium prices of risky assets for

an endowment economy. An endowment economy is one where the random

process generating the economy’s real output (e.g., Gross Domestic Product, or

GDP) is taken to be exogenous. Moreover, it is assumed that output obtained

at a particular date cannot be reinvested to produce more output in the future.

Rather, all output on a given date can only be consumed immediately, implying

that equilibrium aggregate consumption equals the exogenous level of output

at each date. Assets in this economy represent ownership claims on output, so

that output (and consumption) on a given date can also be interpreted as the

cash dividends paid to asset holders. Because reinvestment of output is not

permitted, so that the scale of the production process is fixed, assets can be

viewed as being perfectly inelastically supplied.2

As we will make explicit shortly, these endowment economy assumptions

essentially fix the process for aggregate consumption. Along with the assump-

tion that all individuals are identical, that is, that there is a representative

individual, the endowment economy assumptions fix the processes for individ-

uals’consumptions. Thus, individuals’marginal rates of substitution between

current and future consumptions are pinned down, and the economy’s stochastic

discount factor becomes exogenous. Furthermore, since the exogenous output-

consumption process also represents the process for the market portfolio’s ag-

gregate dividends, that too is exogenous. This makes it easy to solve for the

equilibrium price of the market portfolio.

2An endowment economy is sometimes described as a "fruit tree" economy. The analogy
refers to an economy whose production is represented by a fixed number of fruit trees. Each
season (date), the trees produce a random amount of output in the form of perishable fruit.
The only value to this fruit is to consume it immediately, as it cannot be reinvested to produce
more fruit in the future. (Planting seeds from the fruit to increase the number of fruit trees is
ruled out.) Assets represent ownership claims on the fixed number of fruit trees (orchards),
so that the fruit produced on each date also equals the dividend paid to asset holders.
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In contrast, a production economy is, in a sense, the polar opposite of an en-

dowment economy. A production economy allows for an aggregate consumption-

savings (investment) decision. Not all of current output need be consumed, but

some can be physically invested to produce more output using constant returns

to scale (linear) production technologies. The random distribution of rates of

return on these productive technologies is assumed to be exogenous. Assets

can be interpreted as ownership claims on these technological processes and,

therefore, their supplies are perfectly elastic, varying in accordance to the indi-

vidual’s reinvestment decision. Hence, the main difference between production

and endowment economies is that production economies pin down assets’rates

of return distribution and make consumption (and output) endogenous, whereas

endowment economies pin down consumption and make assets’rates of return

distribution endogenous. Probably the best-known asset pricing model based

on a production economy was derived by John C. Cox, Jonathan E. Ingersoll,

and Stephen A. Ross (Cox, Ingersoll, and Ross 1985a). We will study this

continuous-time, general equilibrium model in Chapter 13.

6.2.1 Including Dividends in Asset Returns

The Lucas model builds on the multiperiod, time-separable utility model of con-

sumption and portfolio choice. We continue with the stochastic discount factor

pricing relationship of equation (6.7) but put more structure on the returns of

each asset. Let the return on the ith risky asset, Rit, include a dividend pay-

ment made at date t+ 1, di,t+1, along with a capital gain, Pi,t+1 −Pit. Hence,

Pit denotes the ex-dividend price of the risky asset at date t:

Rit =
di,t+1 + Pi,t+1

Pit
(6.11)
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Substituting (6.11) into (6.7) and rearranging gives

Pit = Et

[
UC
(
C∗t+1, t+ 1

)
UC (C∗t , t)

(di,t+1 + Pi,t+1)

]
(6.12)

Similar to what was done in equation (6.8), if we substitute for Pi,t+1 us-

ing equation (6.12) updated one period, and use the properties of conditional

expectation, we have

Pit = Et

[
UC
(
C∗t+1, t+ 1

)
UC (C∗t , t)

di,t+1 +
UC
(
C∗t+2, t+ 2

)
UC
(
C∗t+1, t+ 1

) (di,t+2 + Pi,t+2)

)]

= Et

[
UC
(
C∗t+1, t+ 1

)
UC (C∗t , t)

di,t+1 +
UC
(
C∗t+2, t+ 2

)
UC (C∗t , t)

(di,t+2 + Pi,t+2)

]
(6.13)

Repeating this type of substitution, that is, solving forward the difference equa-

tion (6.13), gives us

Pit = Et

 T∑
j=1

UC
(
C∗t+j , t+ j

)
UC (C∗t , t)

di,t+j +
UC
(
C∗t+T , t+ T

)
UC (C∗t , t)

Pi,t+T

 (6.14)

where the integer T reflects a large number of future periods. Now suppose

utility reflects a rate of time preference, so that U (Ct, t) = δtu (Ct), where

δ = 1
1+ρ < 1, so that the rate of time preference ρ > 0. Then (6.14) becomes

Pit = Et

 T∑
j=1

δj
uC
(
C∗t+j

)
uC (C∗t )

di,t+j + δT
uC
(
C∗t+T

)
uC (C∗t )

Pi,t+T

 (6.15)

If we have an infinitely lived individual or, equivalently, an individual whose

utility includes a bequest that depends on the utility of his or her offspring,

then we can consider the solution to (6.15) as the planning horizon, T , goes to

infinity. If limT→∞Et

[
δT

uC(C∗t+T )
uC(C∗t ) Pi,t+T

]
= 0, which (as discussed in the next
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section) is equivalent to assuming the absence of a speculative price “bubble,”

then

Pit = Et

 ∞∑
j=1

δj
uC
(
C∗t+j

)
uC (C∗t )

di,t+j


= Et

 ∞∑
j=1

mt, t+jdi,t+j

 (6.16)

Equation (6.16) is a present value formula, where the stochastic discount fac-

tors are the marginal rates of substitution between the present and the dates

when the dividends are paid. This "discounted dividend" asset pricing for-

mula holds for any individual following an optimal consumption-portfolio choice

policy. Thus far, we have not made any strong assumptions about consumer

homogeneity or the structure of the economy. For example, equation (6.16)

would hold for a production economy with heterogeneous individuals.

6.2.2 Equating Dividends to Consumption

The Lucas model makes equation (6.16) into a general equilibrium model of

asset pricing by assuming there is an infinitely lived representative individual,

meaning that all individuals are identical with respect to utility and initial

wealth. It also assumes that each asset is a claim on a real output process,

where risky asset i pays a real dividend of dit at date t. Moreover, the dividend

from each asset is assumed to come in the form of a nonstorable consumption

good that cannot be reinvested. In other words, this dividend output cannot

be transformed into new investment in order to expand the scale of production.

The only use for each asset’s output is consumption. A share of risky asset

i can be interpreted as an ownership claim on an exogenous dividend-output
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process that is fixed in supply. Assuming no wage income, it then follows that

aggregate consumption at each date must equal the total dividends paid by all

of the n assets at that date:

C∗t =

n∑
i=1

dit (6.17)

Given the assumption of a representative individual, this individual’s consump-

tion can be equated to aggregate consumption.3

6.2.3 Asset Pricing Examples

With these endowment economy assumptions, the specific form of utility for

the representative agent and the assumed distribution of the assets’dividend

processes fully determine equilibrium asset prices. For example, if the represen-

tative individual is risk-neutral, so that uC is a constant, then (6.16) becomes

Pit = Et

 ∞∑
j=1

δjdi,t+j

 (6.18)

In words, the price of risky asset i is the expected value of dividends discounted

by a constant factor, reflecting the constant rate of time preference.

Consider another example where utility is logarithmic, u (Ct) = lnCt. Also

denote dt =
∑n
i=1 dit to be the economy’s aggregate dividends, which we know

by (6.17) equals aggregate consumption. Then the price of risky asset i is given

3 If one assumes that there are many representative individuals, each will have identical per
capita consumption and receive identical per capita dividends. Hence, in (6.17), C∗t and dit
can be interpreted as per capita quantities.
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by

Pit = Et

 ∞∑
j=1

δj
C∗t
C∗t+j

di,t+j


= Et

 ∞∑
j=1

δj
dt
dt+j

di,t+j

 (6.19)

Given assumptions regarding the distribution of the individual assets, the ex-

pectation in (6.19) can be computed. However, under this logarithmic utility

assumption, we can obtain the price of the market portfolio of all assets even

without any distributional assumptions. To see this, let Pt represent a claim

on aggregate dividends. Then (6.19) becomes

Pt = Et

 ∞∑
j=1

δj
dt
dt+j

dt+j


= dt

δ

1− δ (6.20)

implying that the value of the market portfolio moves in step with the current

level of dividends. It does not depend on the distribution of future dividends.

Why? Higher expected future dividends, dt+j , are exactly offset by a lower

expected marginal utility of consumption, mt, t+j = δjdt/dt+j , leaving the value

of a claim on this output process unchanged. This is consistent with our earlier

results showing that a log utility individual’s savings (and consumption) are

independent of the distribution of asset returns. Since aggregate savings equals

the aggregate demand for the market portfolio, no change in savings implies no

change in asset demand. Note that this will not be the case for the more general

specification of power (constant relative-risk-aversion) utility. If u (Ct) = Cγt /γ,

then
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Pt = Et

 ∞∑
j=1

δj
(
dt+j
dt

)γ−1

dt+j


= d1−γ

t Et

 ∞∑
j=1

δjdγt+j

 (6.21)

which does depend on the distribution of future aggregate dividends (output).

Note from (6.21) that for the case of certainty (Et
[
dγt+j

]
= dγt+j), when γ < 0

higher future aggregate dividends reduce the value of the market portfolio, that

is, ∂Pt/∂dt+j = γδj (dt+j/dt)
γ−1

< 0. While this seems counterintuitive, recall

that for γ < 0, individuals desire less savings (and more current consumption)

when investment opportunities improve. Since current consumption is fixed at

dt in this endowment economy, the only way to bring higher desired consumption

back down to dt is for total wealth to decrease. In equilibrium, this occurs

when the price of the market portfolio falls as individuals attempt to sell some

of their portfolio in an (unsuccessful) attempt to raise consumption. Of course,

the reverse story occurs when 0 < γ < 1, as a desired rise in savings is offset by

an increase in wealth via an appreciation of the market portfolio.

If we continue to assume power utility, we can also derive the value of a

hypothetical riskless asset that pays a one-period dividend of $1:

Pft =
1

Rft
= δEt

[(
dt+1

dt

)γ−1
]

(6.22)

Using aggregate U.S. consumption data, Rajnish Mehra and Edward C. Prescott

(Mehra and Prescott 1985) used equations such as (6.21) and (6.22) with dt =

C∗t to see if a reasonable value of γ would produce a risk premium (excess

average return over a risk-free return) for a market portfolio of U.S. common
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stocks that matched these stocks’historical average excess returns. They found

that for reasonable values of γ, they could not come close to the historical

risk premium, which at that time they estimated to be around 6 percent. They

described this finding as the equity premium puzzle. As mentioned in Chapter 4,

the problem is that for reasonable levels of risk aversion, aggregate consumption

appears to vary too little to justify the high Sharpe ratio for the market portfolio

of stocks. The moment conditions in (6.21) and (6.22) require a highly negative

value of γ to fit the data.

6.2.4 A Lucas Model with Labor Income

The Lucas endowment economy model has been modified to study a wide array

of issues. For example, Gurdip Bakshi and Zhiwu Chen (Bakshi and Chen 1996)

studied a monetary endowment economy by assuming that a representative indi-

vidual obtains utility from both real consumption and real money balances. In

future chapters, we will present other examples of Lucas-type economies where

utility is non-time-separable and where utility reflects psychological biases. In

this section, we present a simplified version of a model by

Stephen Cecchetti, Pok-sang Lam, and Nelson Mark (Cecchetti, Lam, and

Mark 1993) that modifies the Lucas model to consider nontraded labor income.4

As before, suppose that there is a representative agent whose financial wealth

consists of a market portfolio of traded assets that pays an aggregate real divi-

dend of dt at date t. We continue to assume that these assets are in fixed supply

and their dividend consists of a nonstorable consumption good. However, now

we also permit each individual to be endowed with nontradeable human capital

4They use a regime-switching version of this model to analyze the equity premium and
risk-free rate puzzles. Based on Generalized Method of Moments (GMM) tests, they find
that their model fits the first moments of the risk-free rate and the return to equity, but not
the second moments.
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that is fixed in supply. The agent’s return to human capital consists of a wage

payment of yt at date t that also takes the form of the nonstorable consumption

good. Hence, equilibrium per capita consumption will equal

C∗t = dt + yt (6.23)

so that it is no longer the case that equilibrium consumption equals dividends.

However, assuming constant relative-risk-aversion utility, the value of the market

portfolio can still be written in terms of future consumption and dividends:

Pt = Et

 ∞∑
j=1

δj
uC
(
C∗t+j

)
uC (C∗t )

dt+j


= Et

 ∞∑
j=1

δj
(
C∗t+j
C∗t

)γ−1

dt+j

 (6.24)

Because wage income creates a difference between aggregate dividends and

equilibrium consumption, its presence allows us to assume separate random

processes for dividends and consumption. For example, one might assume

dividends and equilibrium consumption follow the lognormal processes:

ln
(
C∗t+1/C

∗
t

)
= µc + σcηt+1 (6.25)

ln (dt+1/dt) = µd + σdεt+1

where the error terms are serially uncorrelated and distributed as

 ηt

εt

 ˜N


 0

0

 ,

 1 ρ

ρ 1


 (6.26)

It is left as an end-of-chapter exercise to show that with these assumptions
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regarding the distributions of C∗t+j and dt+j , when δe
α < 1 one can compute

the expectation in (6.24) to be

Pt = dt
δeα

1− δeα (6.27)

where

α ≡ µd − (1− γ)µc +
1

2

[
(1− γ)

2
σ2
c + σ2

d

]
− (1− γ) ρσcσd (6.28)

We can confirm that (6.27) equals (6.20) when γ = 0, µd = µc, σc = σd, and

ρ = 1, which is the special case of log utility and no labor income. With no

labor income (µd = µc, σc = σd, ρ = 1) but γ 6= 0, we have α = γµc + 1
2γ

2σ2
c ,

which is increasing in the growth rate of dividends (and consumption) when

γ > 0. As discussed in Chapter 4, this occurs because greater dividend growth

leads individuals to desire increased savings since they have high intertemporal

elasticity (ε = 1/ (1− γ) > 1). An increase in desired savings reflects the

substitution effect exceeding the income or wealth effect. Market clearing then

requires the value of the market portfolio to rise, raising income or wealth to

make desired consumption rise to equal the fixed supply. The reverse occurs

when γ < 0, as the income or wealth effect will exceed the substitution effect.

For the general case of labor income where α is given by equation (6.28),

note that a lower correlation between consumption and dividends (decline in

ρ) increases α. Since ∂Pt/∂α > 0, this lower correlation raises the value of

the market portfolio. Intuitively, this greater demand for the market portfolio

results because it provides better diversification with uncertain labor income.
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6.3 Rational Asset Price Bubbles

In this section we examine whether there are solutions other than (6.16) that

can satisfy the asset price difference equation (6.15). Indeed, we will show

that there are and that these alternative solutions can be interpreted as bubble

solutions where the asset price deviates from its fundamental value. Potentially,

these bubble solutions may be of interest because there appear to be numerous

historical episodes during which movements in asset prices appear inconsistent

with reasonable dynamics for dividends or outputs. In other words, assets do

not appear to be valued according to their fundamentals. Examples include

the Dutch tulip bulb bubble during the 1620s, the Japanese stock price bubble

during the late 1980s, and the U.S. stock price bubble (particularly Internet-

related stocks) during the late 1990s.5 While some may conclude that these

bubbles represent direct evidence of irrational behavior on the part of individual

investors, might an argument be made that bubbles could be consistent with

rational actions and beliefs? It is this possibility that we now consider.6

Let us start by defining pt ≡ PituC (Ct) as the product of the asset price

and the marginal utility of consumption, excluding the time preference discount

factor, δ. Then equation (6.12) can be written as the difference equation:

Et [pt+1] = δ−1pt − Et
[
uC
(
C∗t+1

)
di,t+1

]
(6.29)

where δ−1 = 1 + ρ > 1 with ρ being the individual’s subjective rate of time

preference. The solution (6.16) to this equation is referred to as the fundamental

solution. Let us denote it as ft:

5Charles P. Kindleberger (Kindleberger 2001) gives an entertaining account of numerous
asset price bubbles.

6Of course, another possibility is that asset prices always equal their fundamental values,
and sudden rises and falls in these prices reflect sudden changes in perceived fundamentals.
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pt = ft ≡ Et

 ∞∑
j=1

δjuC
(
C∗t+j

)
di,t+j

 (6.30)

The sum in (6.30) converges as long as the marginal utility-weighted dividends

are expected to grow more slowly than the time preference discount factor. For

the Lucas endowment economy, assumptions regarding the form of utility and

the distribution of the assets’dividends can ensure that this solution has a finite

value.

While ft satisfies (6.29), it is not the only solution. Solutions that satisfy

(6.29) take the general form pt = ft + bt, where the bubble component of the

solution is any process that satisfies

Et [bt+1] = δ−1bt (6.31)

This is easily verified by substitution into (6.29):

Et [ft+1 + bt+1] = δ−1 (ft + bt)− Et
[
uC
(
C∗t+1

)
di,t+1

]
Et [ft+1] + Et [bt+1] = δ−1ft + δ−1bt − Et

[
uC
(
C∗t+1

)
di,t+1

]
Et [bt+1] = δ−1bt (6.32)

where in the last line of (6.32), we use the fact that ft satisfies the difference

equation. Note that since δ−1 > 1, bt explodes in expected value:

lim
i→∞

Et [bt+i] = lim
i→∞

δ−ibt =

 +∞ if bt > 0

−∞ if bt < 0
(6.33)

The exploding nature of bt provides a rationale for interpreting the general

solution pt = ft + bt, bt 6= 0, as a bubble solution. Only when bt = 0 do we get

the fundamental solution.
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6.3.1 Examples of Bubble Solutions

Suppose that bt follows a deterministic time trend; that is,

bt = b0δ
−t (6.34)

Then the solution

pt = ft + b0δ
−t (6.35)

implies that the marginal utility-weighted asset price grows exponentially for-

ever. In other words, we have an ever-expanding speculative bubble.

Next, consider a possibly more realistic modeling of a "bursting" bubble

proposed by Olivier Blanchard (Blanchard 1979):

bt+1 =

 (δq)
−1
bt + et+1 with probability q

zt+1 with probability 1− q
(6.36)

with Et [et+1] = Et [zt+1] = 0. Note that this process satisfies the condition in

(6.31), so that pt = ft + bt is again a valid bubble solution. In this case, the

bubble continues with probability q each period but “bursts”with probability

1 − q. If it bursts, it returns in expected value to zero, but then a new bubble

would start. To compensate for the probability of a “crash,” the expected

return, conditional on not crashing, is higher than in the previous example of

a never-ending bubble. The disturbance et allows bubbles to have additional

noise and allows new bubbles to begin after the previous bubble has crashed.

This bursting bubble model can be generalized to allow q to be stochastic.7

7The reader is asked to show this in an exercise at the end of the chapter.
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6.3.2 The Likelihood of Rational Bubbles

While these examples of bubble solutions indeed satisfy the asset pricing dif-

ference equation in (6.29), there may be additional economic considerations

that rule them out. One issue involves negative bubbles, that is, cases where

bt < 0. From (6.33) we see that individuals must expect that, at some future

date τ > t, the marginal utility-weighted price pτ = fτ + bτ will become nega-

tive. Of course, since marginal utility is always positive, this implies that the

asset price, Pit = pt/uC (Ct), will also be negative. A negative price would be

inconsistent with limited-liability securities, such as typical shareholders’equity

(stocks). Moreover, if an individual can freely dispose of an asset, its price

cannot be negative. Hence, negative bubbles can be ruled out.

Based on similar reasoning, Behzad Diba and Herschel Grossman (Diba and

Grossman 1988) argue that many types of bubble processes, including bubbles

that burst and start again, can also be ruled out. Their argument is as follows.

Note that the general process for a bubble can be written as

bt = δ−tb0 +
t∑

s=1
δs−tεs (6.37)

where εs, s = 1, ..., t are mean-zero innovations. To avoid negative values of bt

(and negative expected future prices), realizations of εt must satisfy

εt ≥ −δ−1bt−1, ∀t ≥ 0 (6.38)

For example, suppose that bt = 0, implying that, at the current date t, a bubble

does not exist. Then from (6.38) and the requirement that εt+1 have mean

zero, it must be the case that εt+1 = 0 with probability 1. This implies that

if a bubble currently does not exist, it cannot get started next period or at any

future period. The only possibility would be if a positive bubble existed on
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the first day of trading of the asset; that is, b0 > 0.8 Moreover, the bursting

and then restarting bubble in (6.36) could only avoid a negative value of bt+1 if

zt+1 = 0 with probability 1 and et+1 = 0 whenever bt = 0. Hence, this type of

bubble would need to be positive on the first trading day, and once it bursts it

could never restart.

Note, however, that arbitrage trading is unlikely to be a strong argument

against a bursting bubble. While short-selling an asset with bt > 0 would result

in a profit when the bubble bursts, the short-seller could incur substantial losses

beforehand. Over the near term, if the bubble continues, the market value of

the short-seller’s position could become suffi ciently negative so as to wipe out

his personal wealth.

Other arguments have been used to rule out positive bubbles. Similar to

the assumptions underlying the Lucas model of the previous section, Jean Tirole

(Tirole 1982) considers a situation with a finite number of rational individuals

and where the dividend processes for risky assets are exogenously given. In

such an economy, individuals who trade assets at other than their fundamental

prices are playing a zero-sum game, since the aggregate amounts of consumption

and wealth are exogenous. Trading assets at prices having a bubble component

only transfers claims on this fixed supply of wealth between individuals. Hence,

a rational individual will not purchase an asset whose price already reflects a

positive bubble component. This is because at a positive price, previous traders

in the asset have already realized their gains and left a negative-sum game to

the subsequent traders. The notion that an individual would believe that he

can buy an asset at a positive bubble price and later sell it to another at a price

reflecting an even greater bubble component might be considered a "greater

8An implication is that an initial public offering (IPO) of stock should have a first-day
market price that is above its fundamental value. Interestingly, Jay Ritter (Ritter 1991)
documents that many IPOs initially appear to be overpriced since their subsequent returns
tend to be lower than comparable stocks.
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fool" theory of speculative bubbles. However, this theory is not consistent

with a finite number of fully rational individuals in most economic settings.

Manual Santos and Michael Woodford (Santos and Woodford 1997) consider the

possibility of speculative bubbles in a wide variety of economies, including those

with overlapping generations of individuals. They conclude that the conditions

necessary for rational speculative bubbles to exist are relatively fragile. Under

fairly general assumptions, equilibria displaying rational price bubbles can be

excluded.9

6.4 Summary

When individuals choose lifetime consumption and portfolio holdings in an op-

timal fashion, a multiperiod stochastic discount factor can be used to price

assets. This is an important generalization of our earlier single-period pricing

result. We also demonstrated that if an asset’s dividends (cashflows) are mod-

eled explicitly, the asset’s price satisfies a discounted dividend formula. The

Lucas endowment economy model took this discounted dividend formula a step

further by equating aggregate dividends to aggregate consumption. This sim-

plified valuing a claim on aggregate dividends, since now the value of this market

portfolio could be expressed as an expectation of a function of only the future

dividend (output) process.

In an infinite horizon model, the possibility of rational asset price bubbles

needs to be considered. In general, there are multiple solutions for the price of a

risky asset. Bubble solutions represent nonstationary alternatives to the asset’s

fundamental value. However, when additional aspects of the economic envi-

9Of course, other considerations that are not fully consistent with rationality may give
rise to bubbles. José Scheinkman and Wei Xiong (Scheinkman and Xiong 2003) present a
model where individuals with heterogeneous beliefs think that particular information is more
informative of asset fundamentals than it truly is. Bubbles arise due to a premium reflecting
the option to sell assets to the more optimistic individuals.
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ronment are considered, the conditions that would give rise to rational bubbles

appear to be rare.

6.5 Exercises

1. Two individuals agree at date 0 to a forward contract that matures at date

2. The contract is written on an underlying asset that pays a dividend

at date 1 equal to D1. Let f2 be the date 2 random payoff (profit) to the

individual who is the long party in the forward contract. Also let m0i

be the stochastic discount factor over the period from dates 0 to i where

i = 1, 2, and let E0 [·] be the expectations operator at date 0. What is

the value of E0 [m02f2]? Explain your answer.

2. Assume that there is an economy populated by infinitely lived represen-

tative individuals who maximize the lifetime utility function

E0

[ ∞∑
t=0

−δte−act
]

where ct is consumption at date t and a > 0, 0 < δ < 1. The economy is

a Lucas endowment economy (Lucas 1978) having multiple risky assets paying

date t dividends that total dt per capita. Write down an expression for the

equilibrium per capita price of the market portfolio in terms of the assets’future

dividends.

3. For the Lucas model with labor income, show that assumptions (6.25) and

(6.26) lead to the pricing relationship of equations (6.27) and (6.28).

4. Consider a special case of the model of rational speculative bubbles dis-

cussed in this chapter. Assume that infinitely lived investors are risk-
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neutral and that there is an asset paying a constant, one-period risk-free

return of Rf = δ−1 > 1. There is also an infinitely lived risky asset with

price pt at date t. The risky asset is assumed to pay a dividend of dt

that is declared at date t and paid at the end of the period, date t + 1.

Consider the price pt = ft + bt where

ft =

∞∑
i=0

Et [dt+i]

Rf i+1
(1)

and

bt+1 =


Rf
qt
bt + et+1 with probability qt

zt+1 with probability 1− qt
(2)

where Et [et+1] = Et [zt+1] = 0 and where qt is a random variable as of date

t− 1 but realized at date t and is uniformly distributed between 0 and 1.

a. Show whether or not pt = ft + bt, subject to the specifications in (1) and

(2), is a valid solution for the price of the risky asset.

b. Suppose that pt is the price of a barrel of oil. If pt ≥ psolar, then solar

energy, which is in perfectly elastic supply, becomes an economically effi -

cient perfect substitute for oil. Can a rational speculative bubble exist for

the price of oil? Explain why or why not.

c. Suppose pt is the price of a bond that matures at date T < ∞. In this

context, the dt for t ≤ T denotes the bond’s coupon and principal pay-

ments. Can a rational speculative bubble exist for the price of this bond?

Explain why or why not.
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5. Consider an endowment economy with representative agents who maxi-

mize the following objective function:

max
Cs,{ωis},∀s,i

Et

[
T∑
s=t

δsu (Cs)

]

where T < ∞. Explain why a rational speculative asset price bubble

could not exist in such an economy.




