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Introduction

We consider two general approaches to modelling default risk,
a risk characterizing almost all fixed-income securities.

The “structural” approach was developed by Black and
Scholes (1973) and Merton (1974) and values a firm’s
default-risky debt as an explicit function of the firm’s capital
structure and the value and risk of a firm’s assets.

The “reduced form”approach simply assumes that default is
a Poisson process with a time-varying default intensity and
default recovery rate without explicitly modeling a firm’s
assets and capital structure.

Examples of the reduced form approach include Jarrow,
Lando, and Turnbull (1997), Madan and Unal (1998), and
Duffi e and Singleton (1999).
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Structural Approach Assumptions

Consider a model similar to Merton (1974) where a firm owns
risky assets with date t market value A (t) and dynamics

dA/A = (µ− δ) dt + σdz (1)

where µ and σ are the expectation and the standard deviation
of the rate of return on assets and δ is the rate at which
assets are paid out as dividends to the firm’s shareholders.
Along with shareholders’equity, the firm has issued a
zero-coupon debt that promises to pay the amount B at date
T > t, where τ ≡ T − t.
The date t market values of shareholders’equity and the debt
are E (t) and D (t,T ), respectively, so that
A (t) = E (t) + D (t,T ).
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Assumptions (continued)

At date T , the firm pays B to the debtholders if there is
suffi cient firm asset value. Else, bankruptcy occurs and the
debtholders take ownership of the firm’s assets. Thus, the
payoff to debtholders is

D (T ,T ) = min [B,A (T )] (2)

= B −max [0,B − A (T )]

Let P (t,T ) be the current date t price of a default-free,
zero-coupon bond that pays $1 at date T and assume that
the Vasicek (1977) model holds for the default-free term
structure specified earlier in (9.41) to (9.43).

George Pennacchi University of Illinois

Models of Default Risk 4/29



Market Value of Debt

Recognizing that debt’s payoff in (2) equals the default-free
value B less the value of a put option written on the firm’s
assets with strike B, it is valued using option pricing results in
Chapters 9 and 10:

D (t,T ) = P (t,T )B − P (t,T )BN (−h2) + e−δτAN (−h1)
= P (t,T )BN (h2) + e−δτAN (−h1) (3)

where h1 =
[
ln
[
e−δτA/ (P (t,T )B)

]
+ 1

2v
2
]
/v , h2 = h1 − v ,

and v (τ) is given in (9.61).

Note that the debt’s promised yield-to-maturity is
R (t,T ) ≡ 1

τ ln [B/D (t,T )] and its “credit spread” is
R (t,T )− 1

τ ln [1/P (t,T )].
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Market Value of Shareholders’Equity

Given (3), shareholders’equity equals

E (t) = A (t)− D (t,T ) (4)

= A− P (t,T )BN (h2)− e−δτAN (−h1)

= A
[
1− e−δτN (−h1)

]
− P (t,T )BN (h2)

Equity is similar to a call option on the firm’s assets since its
payoff is max [A (T )− B, 0].

However, it differs if the firm pays dividends to equityholders
prior to the debt’s maturity, as reflected in the first term in
the last line of (4).
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Discussion of Structural Models

Merton (1974) analyzes the properties of debt and equity
formulas similar to equations (3) and (4).

Note that an equity formula such as (4) is useful when firms
have publicly traded equity, since observation of the market
value of equity and its volatility can be used to estimate A (t)
and σ, which can then be used to value D (t,T ).

There is now a vast literature on structural models that
modify and extend the original Merton (1974) framework.

Examples include Black and Cox (1976), Leland (1994), and
Collin-Dufresne and Goldstein (2001).
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The Reduced-Form Approach

As before, let D (t,T ) be the date t value of a default-risky,
zero-coupon bond that promises to pay B at its maturity date
of T .

Let λ (t) dt be the instantaneous probability of default
occurring during the interval (t, t + dt), so that λ (t) is the
physical default intensity, or “hazard rate.”

Then the bond’s (physical) survival probability from dates t to
τ is

Et

[
e−
∫ τ
t λ(u)du

]
(5)
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A Zero-Recovery Bond

First, consider a bond that, if it defaults, has zero recovery
value, so that D (T ,T ) = B if there is no default or
D (T ,T ) = 0 if default occurs over the interval from dates t
to T .

Applying risk-neutral pricing, this bond’s value, DZ (t,T ), is

DZ (t,T ) = Êt
[
e−

∫ T
t r (u)duD (T ,T )

]
(6)

where r (t) is the date t instantaneous default-free interest
rate, and Êt [·] is the date t risk-neutral expectations operator.
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State Variables and Pricing Kernel

Suppose the default-free term structure and λ (t) depend on
an n × 1 vector of state variables, x, that follows the process

dx = a (t, x) dt + b (t, x)dz (7)

where x = (x1...xn)′, a (t, x) is an n × 1 vector, b (t, x) is an
n × n matrix, and dz = (dz1...dzn)′ is an n × 1 vector of
independent Brownian motions so that dzidzj = 0 for i 6= j .
Assuming complete markets, the stochastic discount factor for
pricing the firm’s default-risky bond is

dM/M = −r (t, x) dt−Θ (t, x)′ dz−ψ (t, x) [dq − λ (t, x) dt]
(8)

where Θ (t, x) is an n × 1 vector of the market prices of risk
associated with dz and ψ (t, x) is the market price of risk
associated with the actual default event.
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Default as a Poisson Process

The default event is recorded by dq, which if default occurs
q (t) jumps from 0 (the no-default state) to 1 (the absorbing
default state) at which time dq = 1.

The risk-neutral default intensity, λ̂ (t, x), is then given by
λ̂ (t, x) = [1−ψ (t, x)]λ (t, x).

Default is a “doubly stochastic”process, also referred to as a
Cox process, because it depends on the Brownian motion
vector dz that drives x and determines how the likelihood of
default, λ̂ (t, x), changes over time, but it also depends on the
Poisson process dq that determines the arrival of default.

Hence, default risk reflects two types of risk premia, Θ (t, x)
and ψ (t, x).
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Value of the Zero-Recovery Bond

Based on (5), we can solve for DZ (t,T ):

DZ (t,T ) = Êt

[
e−

∫ T
t r (u)due−

∫ T
t λ̂(u)duB

]
(9)

= Êt
[
e−

∫ T
t [r (u)+λ̂(u)]du

]
B

Note that (9) is similar to valuing a default-free bond except
that the discount rate r (u) + λ̂ (u), rather than just r (u), is
used.

Given specific functional forms for r (t, x), λ̂ (t, x), x and
Θ (t, x), (9) can be computed.
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Specifying Recovery Values

Suppose that if the bond defaults at date τ , where
t < τ ≤ T , bondholders recover an amount w (τ , x) at date
τ .

Then the risk-neutral probability density of defaulting at τ is

e−
∫ τ
t λ̂(u)du λ̂ (τ) (10)

In (10), λ̂ (τ) is discounted by exp
[
−
∫ τ
t λ̂ (u) du

]
because

default at date τ is conditioned on not having defaulted
previously.
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Valuing a Bond with Recovery Value

Thus, the present value of recovery, DR (t,T ), is:

DR (t,T ) = Êt

[∫ T

t
e−

∫ τ
t r (u)duw (τ) e−

∫ τ
t λ̂(u)du λ̂ (τ) dτ

]
= Êt

[∫ T

t
e−

∫ τ
t [r (u)+λ̂(u)]du λ̂ (τ)w (τ) dτ

]
(11)

Putting this together with (9) gives the bond’s total value:

D (t,T ) = DZ (t,T ) + DR (t,T ) (12)

= Êt
[
e−

∫ T
t [r (s)+λ̂(s)]dsB

+

∫ T

t
e−

∫ τ
t [r (s)+λ̂(s)]ds λ̂ (τ)w (τ) dτ

]
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Recovery Proportional to Par Value

Let us consider particular specifications for w (τ , x).

Let the default date be τ and assume w (τ , x) = δ (τ , x)B,
where δ (τ , x) can be a constant, say, δ. Then (11) is

DR (t,T ) = δB
∫ T

t
k (t, τ) dτ (13)

where
k (t, τ) ≡ Êt

[
e−

∫ τ
t [r (u)+λ̂(u)]du λ̂ (τ)

]
(14)

has a closed-form solution when r (u, x) and λ̂ (u, x) are affi ne
functions of x and the vector x in (7) has a risk-neutral
process that is also affi ne.

(13) can be computed by numerical integration of k (t, τ).
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Recovery Proportional to Par, Payable at Maturity

Assume that if default occurs at date τ , bondholders recover
δ (τ , x)B at date T , which is equivalent to w (τ , x) =
δ (τ , x)P (τ ,T )B. Then (11) is

DR (t,T )

= Êt

[∫ T

t
e−

∫ τ
t [r (u)+λ̂(u)]du λ̂ (τ) δ (τ , x) e−

∫ T
τ r (u)duBdτ

]
= Êt

[∫ T

t
e−

∫ τ
t λ̂(u)du λ̂ (τ) δ (τ , x) e−

∫ T
t r (u)duBdτ

]
= Êt

[
e−

∫ T
t r (u)du

∫ T

t
e−

∫ τ
t λ̂(u)du λ̂ (τ) δ (τ , x) dτ

]
B (15)
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Recovery Proportional to Par, Payable at Maturity

If δ (τ , x) = δ, note that
∫ T
t exp

[
−
∫ τ
t λ̂ (u) du

]
λ̂ (τ) dτ is

the total risk-neutral probability of default from t to T and
equals 1− exp

[
−
∫ T
t λ̂ (u) du

]
. Thus,

DR (t,T ) = Êt

[
e−

∫ T
t r (u)du

(
1− e−

∫ T
t λ̂(u)du

)]
δB

= Êt
[
e−

∫ T
t r (u)du − e−

∫ T
t [r (u)+λ̂(u)]du

]
δB

= δBP (t,T )− δDZ (t,T ) (16)

Therefore, the total value of the bond is

D (t,T ) = DZ (t,T )+DR (t,T ) =
(
1− δ

)
DZ (t,T )+δBP (t,T )

(17)
so only a value for the zero-recovery bond is required.
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Recovery Proportional to Market Value

Assume that at default, bondholders lose a proportion L (τ , x)
of the bond’s value just prior to default:

D
(
τ+,T

)
= w (τ , x) = D

(
τ−,T

)
[1− L (τ , x)] (18)

Treating the defaultable bond as a contingent claim and
applying Itô’s lemma:

dD (t,T ) /D (t,T ) = (αD − λkD ) dt + σ′Ddz− L (t, x) dq
(19)

where αD and the n× 1 vector σD are given by the usual Itô’s
lemma expressions, the expected jump size kD (τ−) ≡
Eτ− [D (τ+,T )− D (τ−,T )] /D (τ−,T ) = −L (τ , x), so that
the drift term in (19) is αD + λ (t, x) L (t, x).
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Recovery Proportional to Market Value (continued)

The risk-neutral process for D (t,T ) replaces αD with r (t):

dD (t,T ) /D (t,T ) =
(
r (t, x) + λ̂ (t, x) L̂ (t, x)

)
dt(20)

+σ′Ddẑ− L̂ (t, x) dq

where L̂ (t, x) is the risk-neutral loss given default.

Similar to (11.17), D (t,T ) satisfies the PDE:

1
2Trace

[
b (t, x)b (t, x)′Dxx

]
+â (t, x)′Dx−R (t, x)D+Dt = 0

(21)
where Dx is the n × 1 vector of first derivatives, Dxx is the
n × n matrix of second derivatives, â (t, x) =
a (t, x)− b (t, x) Θ, and R (t, x) ≡ r (t, x) + λ̂ (t, x) L̂ (t, x).
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Solution for the Defaultable Bond Value

The PDE (21) is standard except that R (t, x) replaces r (t, x)
in the standard PDE. Thus, the Feynman-Kac solution is

D (t,T ) = Êt
[
e−

∫ T
t R(u,x)du

]
B (22)

where R (t, x) ≡ r (t, x) + λ̂ (t, x) L̂ (t, x) is the
“default-adjusted”discount rate.

The product s (t, x) ≡ λ̂ (t, x) L̂ (t, x) is the “credit spread”
on an instantaneous-maturity, defaultable bond, and since
λ̂ (t, x) and L̂ (t, x) are not individually identified, a single
functional form can be specified for s (t, x).
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Examples

Let x = (x1 x2)
′ be a two-dimensional vector,

â (t, x) = (κ1 (x1 − x1) κ2 (x2 − x2))′, and b (t, x) is a
diagonal matrix with elements of σ1

√
x1 and σ2

√
x2.

Also assume r (t, x) = x1 (t) and λ̂ (t, x) = x2 (t), so that the
default-free term structure and λ̂ (t, x) are independent.

Defining r ≡ x1 and θ1 ≡
√
κ21 + 2σ21, the CIR bond price is

P (t,T ) = A1 (τ) e−B1(τ)r (t), where (23)

A1 (τ) ≡
[

2θ1e(θ1+κ1) τ2

(θ1 + κ1) (eθ1τ − 1) + 2θ1

]2κ1r/σ21
(24)

B1 (τ) ≡
2
(
eθ1τ − 1

)
(θ1 + κ1) (eθ1τ − 1) + 2θ1

(25)
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Examples (continued)

Also define λ ≡ x2, then based on (9) we have

DZ (t,T ) = Êt
[
e−

∫ T
t [r (s)+λ̂(s)]ds

]
B

= Êt
[
e−

∫ T
t r (s)ds

]
Êt
[
e−

∫ T
t λ̂(s)ds

]
B

= P (t,T )V (t,T )B (26)

where
V (t,T ) = A2 (τ) e−B2(τ)λ̂(t) (27)

and where A2 (τ) is the same as A1 (τ) in (24), and B2 (τ) is
the same as B1 (τ) in (25) except that κ2 replaces κ1, σ2

replaces σ1, λ replaces r , and θ2 ≡
√
κ22 + 2σ22 replaces θ1.
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Example: Recovery Proportional to Par, Payable at
Maturity

If recovery is a fixed proportion, δ, of par, payable at maturity,
then from (17):

D (t,T ) =
(
1− δ

)
DZ (t,T ) + δBP (t,T )

=
[
δ +

(
1− δ

)
V (t,T )

]
P (t,T )B (28)

In (27), V (t,T ) is analogous to a bond price in the standard
Cox, Ingersoll, and Ross term structure model and is inversely
related to λ̂ (t) and strictly less than 1 whenever λ̂ (t) is
strictly positive, which can be ensured when 2κ2λ ≥ σ22.

Thus, (28) confirms that the defaultable bond’s value declines
as its risk-neutral default intensity rises.
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Example: Recovery Proportional to Market Value

Assume recovery is proportional to market value and s (t, x) ≡
λ̂ (t, x) L̂ (t, x) = x2 and define s ≡ x2. Then from (22):

D (t,T ) = Êt
[
e−

∫ T
t [r (u)+s(u)]du

]
B

= Êt
[
e−

∫ T
t r (u)du

]
Êt
[
e−

∫ T
t s(u)du

]
B

= P (t,T ) S (t,T )B (29)

where
S (t,T ) = A2 (τ) e−B2(τ)s(t) (30)

and where A2 (τ) is the same as A1 (τ) in (24) and B2 (τ) is
the same as B1 (τ) in (25) except that κ2 replaces κ1, σ2

replaces σ1, s replaces r , and θ2 ≡
√
κ22 + 2σ22 replaces θ1.

D (t,T ) is like P (t,T ) but R (t) = r (t) + s (t) replaces r (t).
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Coupon Bonds

Suppose a defaultable coupon bond promises n cashflows,
with the i th promised cashflow being equal to ci and being
paid at date Ti > t.

Then the value of this coupon bond in terms of our
zero-coupon bond formulas is

n∑
i=1
D (t,Ti )

ci
B

(31)
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Credit Default Swaps

A credit default swap is a contract in which one party, the
protection buyer, makes periodic payments until the contract’s
maturity as long as a particular issuer does not default.
The other party, the protection seller, receives these payments
in return for paying the difference between the issuer’s debt’s
par value and its recovery value if default occurs prior to the
swap’s maturity.
Let the contract specify equal periodic payments of c at
future dates t + ∆, t + 2∆, ..., t + n∆. Since these payments
are contingent on default not occurring, their value is

c
B

n∑
i=1
DZ (t, t + i∆) (32)

where DZ (t,T ) is given in (9).
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Credit Default Swaps (continued)

Let w (τ , x) be the recovery value of the defaultable debt
underlying the swap contract. Then similar to (11), the value
of the swap protection is

Êt

[∫ t+n∆

t
e−

∫ τ
t [r (u)+λ̂(u)]du λ̂ (τ) [B − w (τ)] dτ

]
(33)

Suppose the protection seller’s payment in the event of
default is B − w (τ) = B − δB = B

(
1− δ

)
. Then (33) is

B
(
1− δ

) ∫ t+n∆

t
k (t, τ) dτ (34)

where k (t, τ) is defined in (14).
Given functional forms for r (t, x), λ̂ (t, x), w (t, x), and x, the
value of the swap payments, c , that equates (32) to (33) can
be determined.
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Implementing a Reduced-Form Approach

A general issue when implementing the reduced-form
approach is determining the proper current values λ̂ (t), s (t),
or w (t) that may not be directly observable.

One or more of these default variables might be inferred by
setting the actual market prices of one or more of an issuer’s
bonds to their theoretical formulas.

Then, based on the “implied”values of λ̂ (t), s (t), or w (t),
one can determine whether a given bond of the same issuer is
over- or underpriced relative to other bonds.

Alternatively, these implied default variables can be used to
set the price of a new bond of the same issuer or a credit
derivative (such as a default swap) written on the issuer’s
debt.
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Summary

There are two main branches of modeling defaultable
fixed-income securities.

The structural approach models default based on the
interaction between a firm’s assets and its liabilities.
Potentially, it can improve our understanding between capital
structure and corporate bond and loan prices.

In contrast, the reduced-form approach abstracts from specific
characteristics of a firm’s financial structure, but it permits a
more flexible modeling of default probabilities and may better
describe actual the prices of an issuer’s debt.
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