
Behavioral Finance and Asset Pricing

George Pennacchi

University of Illinois

George Pennacchi University of Illinois

Behavioral Finance and Asset Pricing 1/49



Introduction

We present models of asset pricing where investors’
preferences are subject to psychological biases or where
investors make systematic errors in judging the probability
distribution of asset returns.

A model that incorporates some form of irrationality attempts
to provide a positive or descriptive theory of individual
behavior (behavioral finance).

We first consider Barberis, Huang, and Santos’(2001) model
of an endowment economy where investors’decisions exhibit
prospect theory.

Second, we examine the model of Kogan, Ross, Wang, and
Westerfield (2006) where some investors suffer systematic
optimism or pessimism.
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Prospect Theory

Prospect Theory (Kahneman and Tversky (1979)) specifies
investor utility that is a function of recent changes in, rather
than simply the current level of, financial wealth.

An example is loss aversion which characterizes investor utility
that is more sensitive to recent losses than recent gains in
financial wealth.

A related bias is the house money effect which characterizes
utility where losses following previous losses create more
disutility than losses following previous gains: After a run-up
in asset prices, the investor is less risk averse because
subsequent losses would be “cushioned”by the previous gains.
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Implications of Prospect Theory

As shown by the Barberis, Huang, and Santos model, loss
aversion together with the house money effect have
implications for the dynamics of asset prices.

After a substantial rise in asset prices, lower investor risk
aversion can drive prices even higher, making asset price
volatility exceed that of fundamentals (dividends).

These biases also generate predictability in asset returns since
a substantial recent fall (rise) in asset prices increases
(decreases) risk aversion and expected asset returns.

These biases can also imply a high equity risk premium
because the “excess” volatility in equity prices leads
loss-averse investors to demand a relatively high average rate
of return on equities.
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Barberis, Huang, Santos Model Assumptions

Technology: There is a discrete-time endowment economy
where the risky asset portfolio pays a date t perishable
dividend of Dt . Date t aggregate consumption, C t , equals
this dividend, Dt , plus perishable nonfinancial income, Yt .

C t and Dt , follow the joint lognormal process

ln
(
C t+1/C t

)
= gC + σC ηt+1 (1)

ln (Dt+1/Dt) = gD + σDεt+1

where ηt+1 and εt+1 are serially uncorrelated and distributed(
ηt
εt

)
˜N
((

0
0

)
,

(
1 ρ
ρ 1

))
(2)
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Assumptions (continued)

Let the risky asset return from date t to date t + 1 be
Rt+1 ≡ (Pt+1 + Dt+1) /Pt , and let the zero-net supply
risk-free asset return from t to t + 1 be Rf ,t .

Preferences: Representative, infinitely lived individuals
maximize

E0

[ ∞∑
t=0

(
δt
Cγt
γ
+ btδt+1v (Xt+1,wt , zt)

)]
(3)

where Ct is the individual’s consumption.

wt is the amount of the risky asset held by the individual at
date t.
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Assumptions (continued)

Xt+1 is the total excess return earned on the risky asset from
t to t + 1 and is defined as

Xt+1 ≡ wt (Rt+1 − Rf ,t) (4)

zt < (>) 1 measures prior gains (losses) on the risky asset:

zt = (1− η) + ηzt−1
R
Rt

(5)

where 0 ≤ η ≤ 1 and R is a parameter, approximately equal to
the average risky-asset return. The greater is η, the longer is
the investor’s memory in measuring gains from the risky asset.
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Assumptions (continued)

v (·) models prospect theory’s effect of risky-asset
gains/losses.

If zt = 1 (no prior gains/losses), v (·) displays pure loss
aversion:

v (Xt+1,wt , 1) =
{
Xt+1 if Xt+1 ≥ 0
λXt+1 if Xt+1 < 0

(6)

where λ > 1. If zt 6= 1, v (·) reflects the house money effect.
For prior gains (zt ≤ 1), it equals

v (Xt+1,wt , zt) (7)

=

{
Xt+1 if Rt+1 ≥ ztRf ,t
Xt+1 + (λ− 1)wt (Rt+1 − ztRf ,t) if Rt+1 < ztRf ,t

George Pennacchi University of Illinois

Behavioral Finance and Asset Pricing 8/49



Assumptions (continued)

For prior losses (zt > 1), it equals

v (Xt+1,wt , zt) =
{
Xt+1 if Xt+1 ≥ 0
λ (zt)Xt+1 if Xt+1 < 0

(8)

where λ (zt) = λ+ k (zt − 1), k > 0. Losses that follow
previous losses are penalized at the rate of λ (zt), which
exceeds λ.
The prospect theory term in the utility function is scaled to
make the risky asset price-dividend ratio and the risky asset
risk premium stationary with increases in aggregate wealth:

bt = b0C
γ−1
t (9)

where b0 > 0.
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Solving the Model

The state variables for the individual’s consumption-portfolio
choice problem are wealth, Wt , and zt . We assume
ft ≡ Pt/Dt = ft (zt) and then show that an equilibrium exists
in which this is true. Hence, the return on the risky asset can
be written

Rt+1 =
Pt+1 + Dt+1

Pt
=
1+ f (zt+1)
f (zt)

Dt+1
Dt

(10)

=
1+ f (zt+1)
f (zt)

egD+σD εt+1

Let Rf ,t = Rf , a constant, which will be verified by the
solution to the agent’s first-order conditions. Making this
assumption simplifies the form of v (·).
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Solution (continued)

Note from (7) and (8) that v (Xt+1,wt , zt) can be written
v (Xt+1,wt , zt) = wt v̂ (Rt+1, zt), where for zt < 1

v̂ (Rt+1, zt) (11)

=

{
Rt+1 − Rf if Rt+1 ≥ ztRf
Rt+1 − Rf + (λ− 1) (Rt+1 − ztRf ) if Rt+1 < ztRf

and for zt > 1

v̂ (Rt+1, zt) =
{
Rt+1 − Rf if Rt+1 ≥ Rf
λ (zt) (Rt+1 − Rf ) if Rt+1 < Rf

(12)
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Solution (continued)

The individual’s maximization problem is then

max
{Ct ,wt}

E0

[ ∞∑
t=0

(
δt
Cγt
γ
+ b0δt+1C

γ−1
t wt v̂ (Rt+1, zt)

)]
(13)

subject to the budget constraint

Wt+1 = (Wt + Yt − Ct)Rf + wt (Rt+1 − Rf ) (14)

and the dynamics for zt given in (5).
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Derived Utility of Wealth

Define δtJ (Wt , zt) as the derived utility-of-wealth function.

Then the Bellman equation for this problem is

J (Wt , zt) = max
{Ct ,wt}

Cγt
γ

(15)

+Et
[
b0δC

γ−1
t wt v̂ (Rt+1, zt) + δJ (Wt+1, zt+1)

]
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First Order Conditions

Differentiating with respect to Ct and wt :

0 = Cγ−1t − δRf Et [JW (Wt+1, zt+1)] (16)

0 = Et
[
b0C

γ−1
t v̂ (Rt+1, zt) + JW (Wt+1, zt+1) (Rt+1 − Rf )

]
= b0C

γ−1
t Et [v̂ (Rt+1, zt)] + Et [JW (Wt+1, zt+1)Rt+1]

−Rf Et [JW (Wt+1, zt+1)] (17)
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Solution (continued)

It is straightforward to show that (16) and (17) imply the
standard envelope condition

Cγ−1t = JW (Wt , zt) (18)

Substituting this into (16), one obtains the Euler equation

1 = δRf Et

[(
Ct+1
Ct

)γ−1]
(19)

Using (1) to compute the expectation in (19), we can solve
for the risk-free interest rate:

Rf = e(1−γ)gC−
1
2 (1−γ)

2σ2C /δ (20)

George Pennacchi University of Illinois

Behavioral Finance and Asset Pricing 15/49



Solution (continued)

Using (18) and (19) in (17) implies

0 = b0C
γ−1
t Et [v̂ (Rt+1, zt)] + Et

[
Cγ−1t+1 Rt+1

]
− Rf Et

[
Cγ−1t+1

]
= b0C

γ−1
t Et [v̂ (Rt+1, zt)] + Et

[
Cγ−1t+1 Rt+1

]
− Cγ−1t /δ (21)

or

1 = b0

(
C t
Ct

)γ−1
δEt [v̂ (Rt+1, zt)] + δEt

[
Rt+1

(
Ct+1
Ct

)γ−1]
(22)

In equilibrium, (19) and (22) hold with individual
consumption, Ct , replacing aggregate per-capita consumption,
C t .
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Solution (continued)

Using (1) and (10), (22) is simplified to:

1 = b0δEt [v̂ (Rt+1, zt)] (23)

+δEt

[
1+ f (zt+1)
f (zt)

egD+σD εt+1
(
egC+σC ηt+1

)γ−1]
or

1 = b0δEt

[
v̂
(
1+ f (zt+1)
f (zt)

egD+σD εt+1 , zt

)]
(24)

+δegD−(1−γ)gC+
1
2 (1−γ)

2σ2C (1−ρ2)

×Et
[
1+ f (zt+1)
f (zt)

e(σD−(1−γ)ρσC )εt+1
]
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Solution (continued)

The price-dividend ratio, Pt/Dt = ft (zt), can be computed
numerically from (24).

However, because zt+1 = 1+ η
(
zt R
Rt+1
− 1
)
and

Rt+1 =
1+f (zt+1)
f (zt )

egD+σD εt+1 , zt+1 depends upon zt , f (zt),
f (zt+1), and εt+1:

zt+1 = 1+ η
(
zt
Rf (zt) e−gD−σD εt+1

1+ f (zt+1)
− 1
)

(25)

Therefore, (24) and (25) need to be solved jointly and can be
done by an iterative numerical technique for finding the
function f (·).
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Numerical Soution for Price/Dividend Ratio

Start by guessing an initial function, f (0), and use it to solve
for zt+1 in (25) for given zt and εt+1.
Then, a new candidate solution, f (1), is obtained using the
following recursion that is based on (24):

f (i+1) (zt) = δegD−(1−γ)gC+
1
2 (1−γ)

2σ2C (1−ρ2) ×

Et
[[
1+ f (i) (zt+1)

]
e(σD−(1−γ)ρσC )εt+1

]
(26)

+f (i) (zt) b0δEt

[
v̂

(
1+ f (i) (zt+1)
f (i) (zt)

egD+σD εt+1 , zt

)]
, ∀zt

where the expectations are computed using a Monte Carlo
simulation of the εt+1.
Given f (1), zt+1 is solved again from (25) and the procedure is
repeated until f (i) converges.
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Model Results

For reasonable parameter, Pt/Dt = ft (zt) decreases in zt : if
there are prior risky asset gains (zt is low), then investors are
less risk averse and bid up the risky asset price.

Using the estimated f (·), the unconditional distribution of
stock returns is simulated by randomly generating εt’s.

This shows that since dividends and consumption follow
separate processes, and stock prices have volatility exceeding
that of dividends (fundamentals), stock volatility can be made
substantially higher than consumption volatility.
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Model Results (continued)

Moreover, the effect of loss aversion generates a significant
equity risk premium for reasonable values of γ.

Because investors care about stock volatility, per se, a large
equity premium can exist despite low stock-consumption
correlation.

Consistent with empirical research finding negative
correlations in stock returns at long horizons, the model
generates predictability in stock returns: returns tend to be
higher following crashes (when zt is high) and smaller
following expansions (when zt is low).
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The Impact of Irrational Traders on Asset Prices

The Kogan, Ross, Wang, and Westerfield (2006) model
assumes some investors are fully rational but others are
irrational because they suffer from systematic optimism or
pessimism.

The model shows that irrational investors may not necessarily
lose wealth to rational investors and be driven out of the asset
market.

Even when irrational investors do not survive in the long run,
their trading can significantly impact equilibrium asset prices
for substantial periods.

George Pennacchi University of Illinois

Behavioral Finance and Asset Pricing 22/49



Kogan, Ross, Wang, Westerfield Model Assumptions

A simple endowment economy has two types of representative
agents: rational agents and agents that are irrationally
optimistic or pessimistic regarding risky-asset returns. Both
maximize utility of consumption at a single, future date.

Technology: The risky asset is a claim on a single, risky date
T > 0 dividend payment, DT . DT is the date T realization of

dDt/Dt = µdt + σdz (27)

where µ and σ are constants, σ > 0, and D0 = 1.

Aggregate consumption at date T is CT = DT .

All agents can buy or sell (issue) a zero-coupon bond in zero
net supply that makes a default-free payment of 1 at date T .
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Assumptions (continued)

Preferences and Beliefs: Rational and irrational agents each
have date 0 endowment equal to one-half of the risky asset
and have constant relative risk aversion. For example, the
rational agents maximize

E0

[
Cγr ,T
γ

]
(28)

where γ < 1 and Cr ,T is rational traders’date T consumption.
While rational agents believe (27), irrational agents perceive

dDt/Dt =
(
µ+ σ2η

)
dt + σdẑ (29)

where they believe dẑ is a Brownian motion, whereas in
reality, dẑ = dz − σηdt. Note if the constant η is positive
(negative), irrational traders are optimistic (pessimistic).
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Irrational Agent Beliefs

Hence, rather than the probability measure P that is
generated by dz , irrational traders believe that the probability
measure is generated by dẑ , which we refer to as the
probability measure P̂.

Therefore, an irrational individual’s expected utility is

Ê0

[
Cγn,T
γ

]
(30)

where Cn,T is the date T consumption of the irrational trader.
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Solution Technique

The irrational agent’s utility can be reinterpreted as the
state-dependent utility of a rational individual.

Girsanov’s theorem implies dP̂T = (ξT /ξ0) dPT where if
ξ0 = 1, then

ξT = exp
[∫ T

0
σηdz − 1

2

∫ T

0
(ση)2 ds

]
= e−

1
2σ

2η2T+ση(zT−z0) (31)

Since σ and η are constants, ξt is lognormal dξ/ξ = σηdz .
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Utility of Irrational Agents

Thus, the irrational agents’s expected utility can be written as

Ê0

[
Cγn,T
γ

]
= E0

[
ξT
Cγn,T
γ

]
(32)

= E0

[
e−

1
2σ

2η2T+ση(zT−z0)
Cγn,T
γ

]

(32) shows that the objective function of the irrational trader
is observationally equivalent to that of a rational trader whose
utility depends on zT , which is the same state (Brownian
motion uncertainty) determining the risky asset’s dividend.

George Pennacchi University of Illinois

Behavioral Finance and Asset Pricing 27/49



Martingale Approach to Consumption and Portfolio Choice

Given market completeness, the martingale approach where
lifetime utility contains only a terminal bequest can be
applied. The two types of agents’first order conditions are

Cγ−1r ,T = λrMT (33)

ξTC
γ−1
n,T = λnMT (34)

where λr and λn are the Lagrange multipliers for the rational
and irrational agents, respectively.

Substituting out for MT , we can write

Cr ,T = (λξT )
− 1
1−γ Cn,T (35)

where we define λ ≡ λr/λn.
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Market Equilibrium

Market clearing at the terminal date implies

Cr ,T + Cn,T = DT (36)

Equations (35) and (36) allow us to write:

Cr ,T =
1

1+ (λξT )
1

1−γ
DT (37)

Substituting (37) into (35), we also obtain

Cn,T =
(λξT )

1
1−γ

1+ (λξT )
1

1−γ
DT (38)
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Solution

The parameter λ = λr/λn is determined by the individuals’
initial endowments of wealth, equal to E0 [Ci ,TMT /M0],
i = r , n.

Note that the date t price of the zero coupon bond that pays
1 at date T > t is

P (t,T ) = Et [MT /Mt ] (39)

For analytical convenience, consider deflating all assets prices,
including the individuals’initial wealths, by this zero-coupon
bond price.

Define Wr ,0 and Wn,0 as the initial wealths, deflated by this
zero-coupon bond price, of the rational and irrational
individuals, respectively.
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Deflated Initial Wealths

The deflated wealth of the rational agent is

Wr ,0 =
E0 [Cr ,TMT /M0]

E0 [MT /M0]
=
E0 [Cr ,TMT ]

E0 [MT ]
(40)

=
E0
[
Cr ,TC

γ−1
r ,T /λr

]
E0
[
Cγ−1r ,T /λr

] =
E0
[
Cγr ,T

]
E0
[
Cγ−1r ,T

]

=

E0

[[
1+ (λξT )

1
1−γ
]−γ

DγT

]
E0

[[
1+ (λξT )

1
1−γ
]1−γ

Dγ−1T

]
where in the second line of (40), (33) is used to substitute for
MT , and in the third line (37) is used to substitute for Cr ,T .
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Solution for Lagrange Multiplier

A similar derivation that uses (34) and (38) leads to

Wn,0 =

E0

[
(λξT )

1
1−γ
[
1+ (λξT )

1
1−γ
]−γ

DγT

]
E0

[[
1+ (λξT )

1
1−γ
]1−γ

Dγ−1T

] (41)

Since agents begin with equal 12 shares of the endowment,
Wr ,0 =Wn,0. Equating the right-hand sides of (40) and (41)
and noting that ξT satisfies (31) and

DT /Dt = e[
µ− 1

2σ
2](T−t)+σ(zT−zt ) (42)

is also lognormally distributed, it can be shown that

λ = e−γησ
2T (43)
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Price of the Risky Asset

Given λ, MT /Mt is a constant times[
1+ (λξT )

1
1−γ
]1−γ

Dγ−1T , which allows us to solve for the
equilibrium price of the risky asset.

Define St as the date t < T price of the risky asset deflated
by the price of the zero-coupon bond, and define
εT ,t ≡ λξT = ξte

−γησ2T− 1
2σ

2η2(T−t)+ση(zT−zt ). Then

St =
Et [DTMT /Mt ]

Et [MT /Mt ]
=

Et

[(
1+ ε

1
1−γ
T ,t

)1−γ
DγT

]

Et

[(
1+ ε

1
1−γ
T ,t

)1−γ
Dγ−1T

] (44)
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Analysis of the Results

Though the rational and irrational agents’portfolio policies do
not have a closed form solution, it can be shown that agents’
demand for the risky asset, ω, satisfies
|ω| ≤ 1+ |η| (2− γ) / (1− γ).
For the case of all rational agents, η = 0, then εT ,t = ξt = 1
and from (44) the deflated stock price, Sr ,t , is

Sr ,t =
Et
[
DγT
]

Et
[
Dγ−1T

] = Dte[µ−σ2](T−t)+σ2γ(T−t) (45)

= e[µ−(1−γ)σ
2]T+[(1−γ)− 1

2 ]σ
2t+σ(zt−z0)

Itô’s lemma shows that (45) implies:

dSr ,t/Sr ,t = (1− γ)σ2dt + σdz (46)
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Results (continued)

Similarly, when all agents are irrational, Sn,t satisfies

Sn,t = e[µ−(1−γ−η)σ
2]T+[(1−γ−η)− 1

2 ]σ
2t+σ(zt−z0) = Sr ,teησ

2(T−t)

(47)
and its rate of return follows the process

dSn,t/Sn,t = (1− γ − η)σ2dt + σdz (48)

Note that the effect of η is similar to γ, so that if η is
positive, the higher expected dividend growth acts like lower
risk aversion. The greater demand raises the deflated stock
price and lowers its equilibrium expected rate of return.
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Results (continued)

Note that (46) and (48) indicate that when there is only one
type of agent, the volatility of the risky asset’s deflated return
equals σ.

In contrast, when both types of agents are in the economy,
applying Itô’s lemma to (44) it can be shown that the risky
asset’s volatility, σS ,t , satisfies

σ ≤ σS ,t ≤ σ (1+ |η|) (49)

The conclusion is that a diversity of beliefs has the effect of
raising the equilibrium volatility of the risky asset.
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Risky Asset Price with Logarithmic Utiliy

When utility is logarithmic so that γ = 0, (44) simplifies to

St =
1+ Et [ξT ]

Et
[
(1+ ξT )D

−1
T

] (50)

= Dte[µ−σ
2](T−t) 1+ ξt

1+ ξte−ησ
2(T−t)

= e[µ−
1
2σ

2]T− 1
2σ

2(T−t)+σ(zt−z0) 1+ ξt
1+ ξte−ησ

2(T−t)
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Rational Agents’Share of Wealth

Define

αt ≡
Wr ,t

Wr ,t +Wn,t
=
Wr ,t

St
(51)

as the proportion of total wealth owned by the rational
individuals. Using (40) and (44), when γ = 0 it equals

αt =

Et

[(
1+ ε

1
1−γ
T ,t

)−γ
DγT

]

Et

[(
1+ ε

1
1−γ
T ,t

)1−γ
DγT

] = 1
1+ Et [ξT ]

=
1

1+ ξt

(52)
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Mean and Volatility of Risky Asset with Log Utility

Viewing St as a function of Dt and ξt as in the second line of
(50), Itô’s lemma can be applied to derive

σS ,t = σ + ησ

[
1

1+ e−ησ2(T−t)
(
α−1t − 1

) − αt] (53)

and
µS ,t = σ2S ,t − ησ (1− αt)σS ,t (54)

where we have used αt = 1/ (1+ ξt) to substitute out for ξt .

Note that when αt = 1 or 0, (53) and (54) are consistent with
(46) and (48) for the case of γ = 0.
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Friedman Conjecture

The model is used to study how Cn,T /Cr ,T is distributed as T
becomes large.

Milton Friedman (1953) conjectured that irrational traders
cannot survive in a competitive market: the relative extinction
of an irrational agent would occur if

lim
T→∞

Cn,T
Cr ,T

= 0 a.s. (55)

which means that for arbitrarily small δ the probability of∣∣∣∣ limT→∞
Cn,T
Cr ,T

∣∣∣∣ > δ equals zero.

An agent is said to survive relatively in the long run if relative
extinction does not occur.
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Survival/Extinction under Log Utility

For log utility, irrational agents always suffer relative
extinction. To see this, rearrange (35):

Cn,T
Cr ,T

= (λξT )
1

1−γ (56)

and for γ = 0, (43) implies that λ = 1. Hence,

Cn,T
Cr ,T

= ξT (57)

= e−
1
2σ

2η2T+ση(zT−z0)
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Stong Law of Large Numbers

Based on the strong law of large numbers for Brownian
motions, it can be shown that for any value of b

lim
T→∞

eaT+b(zT−z0) =
{
0 a < 0
∞ a > 0

(58)

where convergence occurs almost surely.

Since −12σ
2η2 < 0 in (57), equation (55) is proved.

The intuition for relative extinction is linked to the specialness
of log utility. The logarithmic rational agent maximizes at
each date t:

Et [lnCr ,T ] = Et [lnWr ,T ] (59)
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Growth-Optimum Portfolio

(59) is equivalent to maximizing the expected continuously
compounded return:

Et

[
1

T − t ln (Wr ,T /Wr ,t)

]
=

1
T − t [Et [ln (Wr ,T )]− ln (Wr ,t)]

(60)
since Wr ,t is known at date t and T − t > 0.
Thus, this portfolio policy maximizes Et [d lnWr ,t ] and is
referred to as the “growth-optimum portfolio.”
Note that the rational and irrational agents’wealths satisfy

dWr ,t/Wr ,t = µr ,tdt + σr ,tdz (61)

dWn,t/Wn,t = µn,tdt + σn,tdz (62)

where, in general, µr ,t , µn,t , σr ,t , and σn,t , are time varying.
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Growth in Relative Wealths

Applying Itô’s lemma, it is straightforward to show

d ln
(
Wn,t

Wr ,t

)
=

[(
µn,t −

1
2
σ2n,t

)
−
(
µr ,t −

1
2
σ2r ,t

)]
dt

+(σn,t − σr ,t) dz
= Et [d lnWn,t ]− Et [d lnWr ,t ] + (σn,t − σr ,t) dz

(63)

Since the irrational agents choose a portfolio policy that
deviates from the growth-optimum portfolio, we know
Et [d lnWn,t ]− Et [d lnWr ,t ] < 0, and thus
Et [d ln (Wn,t/Wr ,t)] < 0, making d ln (Wn,t/Wr ,t) a process
that is expected to steadily decline as t −→∞, verifying
Friedman’s conjecture.
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Survival for General CRRA Utility

The presence of irrational agents can impact asset prices for
substantial periods of time prior to becoming "extinct."

Moreover, if γ < 0 Friedman’s conjecture may not always
hold. Computing (56) for the general case of λ = e−γησ

2T :

Cn,T
Cr ,T

= (λξT )
1

1−γ (64)

= e−[γη+
1
2 η
2] σ

2

1−γT+
ση
1−γ (zT−z0)

The limiting behavior of Cn,T /Cr ,T depends on the sign of[
γη + 1

2η
2
]
or η

(
γ + 1

2η
)
.
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Survival/Extinction for General CRRA Utility

If γ < 0, the strong law of large numbers implies

lim
T−→∞

Cn,T
Cr ,T

=


0 η < 0 rational trader survives
∞ 0 < η < −2γ irrational trader survives
0 −2γ < η rational trader survives

(65)

If the irrational agent is pessimistic (η < 0) or strongly
optimistic (η > −2γ), he becomes relatively extinct.
However, when the irrational agent is moderately optimistic
(0 < η < −2γ), it is the rational agent who becomes
relatively extinct!
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Intuition for General Result

The intuition is that when γ < 0, rational agents’demand for
the risky asset is less than that of a log utility agent, so that
their wealths grow more slowly.

When the irrational agent is moderately optimistic
(0 < η < −2γ), her portfolio demand is relatively closer to the
growth-optimal portfolio.
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Extensions

If agents were assumed to gain utility from interim
consumption, this would reduce the growth of their wealth
and affect their relative survivability.

Also, systematic differences between rational and irrational
agents’risk aversions could influence the model’s conclusions.

In addition, one might expect that irrational agents might
learn over time of their mistakes.

Lastly, the model considers only one form of irrationality:
systematic optimism or pessimism.
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Summary

This note considered two equilibrium models that incorporate
psychological biases or irrationality.

While considered “behavioral finance”models, they can be
solved using standard techniques.

Currently, there is little consensus among financial economists
regarding the importance of incorporating aspects of
behavioral finance into asset pricing theories.

George Pennacchi University of Illinois

Behavioral Finance and Asset Pricing 49/49


