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Introduction

We analyze the Intertemporal Capital Asset Pricing Model
(ICAPM) of Robert Merton (1973).

The standard single-period CAPM holds when investment
opportunities are constant, but with changing investment
opportunities, a multi-beta ICAPM results.

Breeden (1979) shows that this multi-beta ICAPM can be
written as a single “consumption beta”CAPM (CCAPM).

We also analyze the general equilibrium production economy
model of (Cox, Ingersoll and Ross,1985) that is useful for
pricing contingent claims.
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ICAPM Model Assumptions

Individuals can trade in a risk-free asset paying rate of return
of r (t) and in n risky assets whose rates of return are

dSi (t) / Si (t) = µi (x , t) dt + σi (x , t) dzi (1)

where i = 1, ..., n, and (σi dzi )(σj dzj ) = σij dt.

The k state variables follow the process:

dxi = ai (x , t) dt + bi (x , t) dζ i (2)

where i = 1, ..., k, and (bi dζ i )(bj dζ j ) = bij dt and
(σi dzi )(bj dζ j ) = φij dt.
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Constant Investment Opportunities

When r and the µi’s, σi’s, and σij’s are constants, we showed
previously that it is optimal for all individuals to choose the
risky assets in the relative proportions

δk =

n∑
j=1

νkj (µj − r)

n∑
i=1

n∑
j=1

ν ij (µj − r)
(3)

This “single” risky asset portfolio’s mean and variance is

µ ≡
n∑
i=1

δiµi σ2 ≡
n∑
i=1

n∑
j=1

δiδjσij . (4)
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CAPM Equilibrium

Similar to our derivation of the single-period CAPM, we argue
that in equilibrium this common risky-asset portfolio must be
the market portfolio; that is, µ = µm and σ

2 = σ2m .

Moreover, the continuous-time market portfolio is exactly the
same as that implied by the single-period CAPM.

Thus, asset returns in this continuous-time environment
satisfy the same relationship as the single-period CAPM:

µi − r = β i (µm − r) , i = 1, . . ., n (5)

where β i = σim/σ
2
m .
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CAPM Implications

Thus, the constant investment opportunity set assumption
replicates the standard, single-period CAPM.

Yet, rather than asset returns being normally distributed as in
the single-period CAPM, the ICAPM has asset returns that
are lognormally distributed.

While the standard CAPM results continue to hold for this
more realistic intertemporal environment, the assumptions of
a constant risk-free rate and unchanging asset return means
and variances are untenable.

Clearly, interest rates vary over time, as do the volatilities of
assets such as common stocks.
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Stochastic Investment Opportunities

For a single state variable, x , the system of n equations that
an individual’s portfolio weights satisfy are:

0 = −A(µi − r) +
n∑
j=1

σijω
∗
jW − Hφi , i = 1, . . . , n (6)

where A = −JW /JWW = −UC / [UCC (∂C/∂W )] and
H = −JWx/JWW = − (∂C/∂x) / (∂C/∂W ).
Rewrite (6) in matrix form, and use the superscript p to
denote the values for the pth person (individual):

Ap (µ− re) = ΩωpW p − Hpφ (7)

where µ = (µ1, ..., µn)′, e is an n-dimensional vector of ones,
ωp = (ωp1 , ..., ω

p
n)′ and φ = (φ1, ..., φn)′.
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Aggregate Asset Demands

Sum (7) across all persons and divide by
∑
p A

p :

µ− re = aΩα− hφ (8)

where a ≡
∑
pW

p/
∑
p A

p , h ≡
∑
p H

p/
∑
p A

p , and
α ≡

∑
p ω

pW p/
∑
pW

p is the average investment in each
asset. These must be the market weights.
The i th row (i th asset excess return) of equation (8) is

µi − r = aσim − hφi (9)

Pre-multiply (8) by α′ to obtain

µm − r = aσ2m − hσmx (10)

where σmx = α′φ is the covariance between the market
portfolio and the state variable, x .
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Portfolio that Best Hedges the State Variable

Define η ≡ Ω−1φ
e′Ω−1φ , which are the weights of the portfolio that

best hedge changes in the state variable, x .
The expected excess return on this portfolio is found by
pre-multiplying (8) by η′:

µη − r = aσηm − hσηx (11)

where σηm and σηx are the hedge portfolio’s covariances with
the market portfolio and the state variable, respectively.
Solving the two linear equations (10) and (11) for a and h,
and substituting them back into equation (9) gives:

µi−r =
σimσηx − φiσmη
σ2mσηx − σmxσmη

(µm − r)+
φiσ

2
m − σimσmx

σ2mσηx − σmxσmη
(
µη − r

)
(12)
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ICAPM

It can be shown that (12) is equivalent to

µi − r =
σimσ

2
η − σiησmη

σ2mσ
2
η − σ2mη

(µm − r) +
σiησ

2
m − σimσmη

σ2ησ
2
m − σ2mη

(
µη − r

)
≡ βmi (µm − r) + βηi

(
µη − r

)
(13)

where σiη is the covariance between the return on asset i and
that of the hedge portfolio.
σiη = 0 iff φi = 0. If x is uncorrelated with the market so that
σmη = 0, equation (13) simplifies to

µi − r =
σim
σ2m

(µm − r) +
σiη
σ2η

(
µη − r

)
(14)

Equation (13) generalizes to multiple state variables with an
additional “beta” for each state (c.f., APT).
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Extension to State-Dependent Utility

If an individual’s utility is affected by the state of economy, so
that U (Ct , xt , t), the form of the first order conditions for
consumption (Ct) and the portfolio weights (ωi ) remain
unchanged and equation (13) continues to hold.
The only change is the interpretation of H, the hedging
coeffi cient. Taking the total derivative of envelope condition
JW = UC :

JWx = UCC
∂C
∂x

+ UCx (15)

so that

H = − ∂C/∂x
∂C/∂W

− UCx
UCC ∂C

∂W

(16)

implying that portfolio holdings minimize the variance of
marginal utility.
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Breeden’s Consumption CAPM

Substitute in for Ap and Hp in equation (7) for the case of k
state variables and rearrange to obtain:

−
UpC

UpCCC
p
W

(µ− re) = ΩωpW p + ΦCpx/C
p
W (17)

where C pW = ∂C p/∂W p , Cpx =
(
∂C p
∂x1

...∂C
p

∂xk

)′
, and Φ is the

n × k asset return - state variable covariance matrix whose
i ,j th element is φij . Pre-multiplying (17) by C

p
W :

−
UpC
UpCC

(µ− re) = ΩWpC pW + ΦCpx (18)

where ΩWp is n × 1 vector of covariances between asset
returns and investor p’s wealth.
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Covariance between Asset Returns and Consumption

Using Itô’s lemma, individual p’s optimal consumption,
C p (W p , x, t), follows a process whose stochastic terms for
dC p are

C pW
(
ωp1W

pσ1dz1 + ...+ ωpnW
pσndzn

)
+(b1dζ1 b2dζ2...bkdζk )Cpx

(19)

The covariance of asset returns with changes in individual p’s
consumption are given by calculating the covariance between
each asset (having stochastic term σidzi ) with the terms given
in (19). Denoting ΩCp as this n × 1 vector of covariances:

ΩCp =ΩWpC pW +ΦCpx (20)
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Consumption Covariance

The right-hand sides of (20) and (18) are equal, implying:

ΩCp =−
UpC
UpCC

(µ− re) (21)

Define C as aggregate consumption per unit time and define
T as an aggregate rate of risk tolerance where

T ≡
∑
p

−
UpC
UpCC

(22)

Then aggregate (21) over all individuals to obtain

µ− re = T−1ΩC (23)

where ΩC is the n × 1 vector of covariances between asset
returns and changes in aggregate consumption.
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Excess Expected Returns on Risky Assets

Multiply and divide the right-hand side of (23) by current
aggregate consumption to obtain:

µ− re = (T/C )−1 ΩlnC (24)

where ΩlnC is the n × 1 vector of covariances between asset
returns and changes in log consumption growth.

Let a portfolio, m, have weights ωm that pre-multiply (24):

µm − r = (T/C )−1 σm,ln C (25)

where portfolio m’s expected return and covariance with
consumption growth is µm and σm,ln C . Portfolio m may or
may not be the market portfolio.
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Consumption CAPM

Use (25) to substitute for (T/C )−1 in (24):

µ− re = (ΩlnC/σm,ln C ) (µm − r)
= (βC/βmC ) (µm − r) (26)

where βC and βmC are the “consumption betas”of all asset
returns and portfolio m’s return.
The consumption beta for any asset is defined as:

β iC = cov (dSi/Si , d lnC ) /var (d lnC ) (27)

Equation (26) says that the ratio of expected excess returns
on any two assets or portfolios of assets is equal to the ratio
of their betas measured relative to aggregate consumption.
Hence, the risk of a security’s return can be summarized by a
single consumption beta.
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A Cox, Ingersoll, and Ross Production Economy

The ICAPM and CCAPM are not general equilibrium models
since they take the form of equilibrium asset price processes as
given.

However, their asset price processes can be justified based on
the Cox, Ingersoll, and Ross (1985) continuous-time,
production economy model.

The model assumes that there is a single good that can be
either consumed or invested. This “capital-consumption”
good can be invested in any of n different risky technologies
that produce an instantaneous change in the amount of this
good.
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Model Assumptions

If an amount ηi is physically invested in technology i , then the
proportional change in the good produced is

dηi (t)
ηi (t)

= µi (x , t) dt + σi (x , t) dzi , i = 1, ..., n (28)

where (σi dzi )(σj dzj ) = σij dt. The rate of change in the
invested good produced has expected value and standard
deviation of µi and σi .
Note that each technology displays “constant returns to
scale” and µi and σi can vary with time and with a k × 1
vector of state variables, x(t).
Thus, the economy’s technologies for transforming
consumption into more consumption reflect changing
(physical) investment opportunities.
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Model Assumptions cont’d

The i th state variable is assumed to follow the process

dxi = ai (x , t) dt + bi (x , t) dζ i (29)

where i = 1, ..., k, and (bi dζ i )(bj dζ j ) = bij dt and
(σi dzi )(bj dζ j ) = φij dt.

If each technology is owned by an individual firm, financed
entirely by shareholders’equity, then the rate of return on
shareholders’equity of firm i , dSi (t) /Si (t), equals the
proportional change in the value of the firm’s physical assets
(capital), dηi (t) /ηi (t).

Here, dSi (t) /Si (t) = dηi (t) /ηi (t) equals the instantaneous
dividend yield where dividends come in the form of a physical
capital-consumption good.
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Model Assumptions cont’d

CIR’s specification allows one to solve for the equilibrium
prices of securities other than those represented by the n risky
technologies.

This is done by imagining there to be other securities that
have zero net supplies.

Assuming all individuals are identical in preferences and
wealth, this amounts to the riskless investment having a zero
supply in the economy, so that r is really a “shadow” riskless
rate.

Yet, this rate would be consistent, in equilibrium, with the
specification of the economy’s other technologies.
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Solving for the Equilibrium Riskless Rate

An individual’s consumption and portfolio choice problem
allocates savings to firms investing in the n technologies.

An equilibrium is defined as a set of interest rate,
consumption, and portfolio weight processes
{r ,C ∗, ω∗1, ..., ω∗n} such that the individual’s first order
conditions hold and markets clear:

∑n
i=1 ωi = 1 and ωi ≥ 0.

Since the capital-consumption good is physically invested in
the technologies, the constraint against short-selling, ωi ≥ 0,
applies.

Because, in equilibrium, the representative individuals do not
borrow or lend, the situation is exactly as if a riskless asset did
not exist.
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Optimization without a Riskless Asset

Consider the individual’s problem as before except that the
process for wealth excludes a risk-free asset:

max
Cs ,{ωi,s},∀s ,i

Et

[ ∫ T

t
U (Cs , s) ds + B(WT ,T )

]
(30)

subject to

dW =
n∑
i=1

ωiWµi dt − Ct dt +
n∑
i=1

ωiWσi dzi (31)

and
∑n
i=1 ωi = 1 and ωi ≥ 0. The first order condition for

consumption is

0 =
∂U (C ∗, t)

∂C
− ∂J (W , x , t)

∂W
(32)
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Optimal Portfolio Weights with Short Sale Constraints

Let λ be the Lagrange multiplier for
∑n
i=1 ωi = 1. Then the

first order conditions for ωi is

Ψi ≡
∂J
∂W

µiW +
∂2J
∂W 2

n∑
j=1

σijω
∗
jW

2 +
k∑
j=1

∂2J
∂xj ∂W

φijW − λ ≤ 0

0 = Ψiω
∗
i i = 1, . . . , n (33)

Kuhn-Tucker conditions (33) imply that if Ψi < 0, then
ω∗i = 0, so that i th technology is not employed.
Assuming (28) and (29) are such that all technologies are
employed so Ψi = 0 ∀i , then the solution is

ω∗i = − JW
JWWW

n∑
j=1

ν ijµj−
k∑

m=1

n∑
j=1

JWxm
JWWW

ν ijφjm+
λ

JWWW 2

n∑
j=1

ν ij

(34)
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Equilibrium Portfolio Allocation

Using matrix notation, (34) becomes

ω∗ =
A
W

Ω−1µ− Aλ
JWW 2Ω−1e+

k∑
j=1

Hj
W

Ω−1φj (35)

where A = −JW /JWW , Hj = −JWxj /JWW , and
φj = (φ1j , ..., φnj )

′.
The weights are a linear combination of k + 2 portfolios.
The first two portfolios are mean-variance effi cient portfolios:
Ω−1µ is the portfolio on the effi cient frontier that is tangent
to a line drawn from the origin (a zero interest rate) while
Ω−1e is the global minimum variance portfolio.
The last k portfolios, Ω−1φj , j = 1, ..., k, hedge against
changes in the technological investment opportunities.
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Equilibrium Consumption and Portfolio Weights

The proportions of these k + 2 portfolios chosen depend on
the individual’s utility.

An exact solution is found in the usual manner of substituting
(35) and C ∗ = G (JW ) into the Bellman equation.

For specific functional forms, a value for the indirect utility
function, J (W , x , t) can be derived. This, along with the
restriction

∑n
i=1 ωi = 1, determines the specific optimal

consumption and portfolio weights.

Since in the CIR economy the riskless asset is in zero net
supply, portfolio weights in (35) must be those chosen by the
representative individual even if offered the opportunity to
borrow or lend at rate r .
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Portfolio Allocation with a Riskless Asset

Recall that portfolio weights for the case of including a
risk-free asset are

ω∗ =
A
W

Ω−1 (µ−re) +
k∑
j=1

Hj
W

Ω−1φj , i = 1, . . . , n (36)

(35) and (36) are identical when r = λ/ (JWW ). Hence,

r =
λ

WJW
(37)

= ω∗′µ−W
A
ω∗′Ωω∗ +

k∑
j=1

Hj
A
ω∗′φj

(37) is the same as (10) extended to k state variables.
Hence, the ICAPM and CCAPM hold for the CIR economy.
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Valuing Contingent Claims in Zero Net Supply

The CIR model also can be used to find the equilibrium
“shadow prices”of other contingent claims.

Suppose the payoff of a zero-net-supply contingent claim
depends on wealth, time, and the state variables, so that
P (W , t, {xi}). Itô’s lemma implies

dP = uPdt + PWW
∑n
i=1 ω

∗
i σidzi +

∑k
i=1 Pxibidζ i (38)

where

uP = PW
(
Wω∗′µ− C

)
+
∑k
i=1 Pxi ai + Pt +

PWWW 2

2
ω∗′Ωω∗

+
∑k
i=1 PWxiWω

∗′φi +
1
2
∑k
i=1
∑k
j=1 Pxi xjbij (39)
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Expected Return under ICAPM

The ICAPM relation (9) extended to k states is

u = r +
W
A
Cov (dP/P, dW /W )−

∑k
i=1

Hi
A
Cov (dP/P, dxi )

(40)

Noting that the representative agent’s wealth is the market
portfolio:

uP = rP +
1
A
Cov (dP, dW )−

∑k
i=1

Hi
A
Cov (dP, dxi )

= rP +
1
A

(
PWW 2ω∗′Ωω∗ +

∑k
i=1 PxiWω

∗′φi

)
−
∑k
i=1

Hi
A

(
PWWω∗′φi +

∑k
j=1 Pxjbij

)
(41)
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Equilibrium Partial Differential Equation

Equating (39) and (41) and recalling the value of the
equilibrium risk-free rate in (37), we obtain a partial
differential equation for the contingent claim’s value:

0 =
PWWW 2

2
ω∗′Ωω∗ +

1
2
∑k
i=1
∑k
j=1 Pxi xjbij +∑k

i=1 PWxiWω
∗′φi + PW (rW − C ) + Pt∑k

i=1 Pxi

[
ai −

W
A
ω∗′φi +

∑k
j=1

Hjbij
A

]
− rP (42)
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An Example with Log Utility

Let U(Cs , s) = e−ρs ln (Cs ) and B (WT ,T ) = e−ρT ln (WT ).

Then we previously showed that J (W , x , t) =
d (t) e−ρt ln (Wt) + F (x , t) where
d (t) = 1

ρ

[
1− (1− ρ) e−ρ(T−t)], so that C ∗t = Wt/d (t).

Since JWxi = 0, Hi = 0, and A = W , the portfolio weights in
(35) are

ω∗ = Ω−1 (µ−re) (43)

where r = λ/ (JWW ).
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Market Portfolio Weights

Market clearing requires e′ω∗ = 1, and solving for r(t):

r =
e′Ω−1µ− 1
e′Ω−1e

(44)

Substituting (44) into (43),the equilibrium portfolio weights
are:

ω∗ = Ω−1
[
µ−

(
e′Ω−1µ− 1
e′Ω−1e

)
e
]

(45)
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Square Root Process State Variable

Assume that a single state variable, x (t) , affects all
production processes:

dηi/ηi = µ̂ix dt + σ̂i
√
xdzi , i = 1, ..., n (46)

where µ̂i and σ̂i are assumed to be constants and the state
variable follows the square root process

dx = (a0 + a1x) dt + b0
√
xdζ (47)

where dzidζ = ρidt.

If a0 > 0 and a1 < 0, x is a nonnegative, mean-reverting
random variable.
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Equilibrium Interest Rate Process

Write the technologies’n × 1 vector of expected rates of
return as µ = µ̂x and their n × n matrix of rate of return
covariances as Ω= Ω̂x .
Then from (44), the equilibrium interest rate is

r =
e′Ω̂−1µ̂− 1
e′Ω̂−1e

x = αx (48)

where α ≡
(
e′Ω̂−1µ̂− 1

)
/e′Ω̂−1e is a constant.

Thus, the risk-free rate follows the “square root”process:

dr = αdx = κ (r − r) dt + σ
√
rdζ (49)

where κ ≡ −a1 > 0, r ≡ −αa0/a1 > 0, and σ ≡ b0
√
α.

When 2κr ≥ σ2, if r (t) > 0 it remains positive at all future
dates, as would a nominal interest rate.
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Valuing Default-Free Discount Bonds

Consider the price of a default-free bond that matures at
T ≥ t.
PW , PWW , and PWx in (42) are zero, and since r = αx , the
bond’s price can be written as P (r , t,T ). The PDE (42)
becomes

σ2r
2
Prr + [κ (r − r)− ψr ]Pr − rP + Pt = 0 (50)

where ψ ≡ ω̂′φ̂. ω̂ equals the right-hand side of equation
(45) but with µ replaced by µ̂ and Ω replaced by Ω̂, while φ̂
is an n × 1 vector whose i th element is σσ̂iρi .
ψr = ω∗′φ is the covariance of interest rate changes with
(market) wealth, or the interest rate’s “beta”.
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Solution for Bond Prices

Solving PDE (50) subject to P (r ,T ,T ) = 1 leads to

P (r , t,T ) = A (τ) e−B(τ)r (51)

where τ = T − t, θ ≡
√

(κ+ ψ)2 + 2σ2,

A (τ) ≡
[

2θe(θ+κ+ψ) τ2

(θ + κ+ ψ) (eθτ − 1) + 2θ

]2κr/σ2
(52)

B (τ) ≡
2
(
eθτ − 1

)
(θ + κ+ ψ) (eθτ − 1) + 2θ

(53)

Note that the bond price is derived from an equilibrium model
of preferences and technologies rather than the absence of
arbitrage (c.f., Vasicek).
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Equilibrium Bond Price Process

Note that Itô’s lemma implies the bond price follows

dP = Prdr +
1
2
Prrσ2rdt + Ptdt (54)

=

(
1
2
Prrσ2r + Pr [κ (r − r)] + Pt

)
dt + Prσ

√
rdζ

From (50) 12Prrσ
2r + Pr [κ (r − r)] + Pt = rP + ψrPr , so that

dP/P = r
(
1+ ψ

Pr
P

)
dt +

Pr
P
σ
√
rdζ (55)

= r (1− ψB (τ)) dt − B (τ)σ
√
rdζ

where from (51) we substituted Pr/P = −B (τ).
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Equilibrium Market Price of Interest Rate Risk

Hence,
µp (r , τ)− r
σp (r , τ)

=
−ψrB (τ)

σ
√
rB (τ)

= −ψ
√
r

σ
(56)

Thus we see that the market price of interest rate risk is
proportional to the square root of the interest rate.

When ψ < 0, which occurs when the interest rate is
negatively correlated with the return on the market portfolio
(and bond prices are positively correlated with the market
portfolio), bonds will carry a positive risk premium.
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Summary

The Merton ICAPM shows that when investment
opportunities are constant, the expected returns on assets
satisfy the single-period CAPM

In general, an asset’s risk premia include the asset’s
covariances with asset portfolios that hedge against changes
in investment opportunities.

The multi-beta ICAPM can be simplified to a single
consumption beta CCAPM.

The Cox, Ingersoll, and Ross model shows the ICAPM results
are consistent with a general equilibrium production economy.

The model also is used to derive the equilibrium interest rate
and the shadow prices of securities in zero net supply.
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