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Introduction

Assuming that asset prices follow di¤usion processes, we
derive an individual�s continuous consumption and portfolio
choices.

Asset demands re�ect single-period mean-variance terms as
well as components that hedge against changes in investment
opportunities.

Consumption and portfolio choices can be solved using
stochastic dynamic programming or, when markets are
complete, a martingale technique.
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Model Assumptions

Let x be a k � 1 vector of state variables that a¤ect the
distribution of asset returns, where r (x ; t) is the date t
instananeous-maturity risk-free rate and the date t price of
the i th risky asset, Si (t), follows the process

dSi (t) = Si (t) = �i (x ; t) dt + �i (x ; t) dzi (1)

where i = 1; :::; n and (�i dzi )(�j dzj ) = �ij dt. The process
(1) assumed the reinvestment of dividends.
The i th state variable follow the process

dxi = ai (x ; t) dt + bi (x ; t) d� i (2)

where i = 1; :::; k. d� i is a Brownian motion with
(bi d� i )(bj d� j ) = bij dt and (�i dzi )(bj d� j ) = �ij dt.
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Model Assumptions cont�d

De�ne Ct as the individual�s date t rate of consumption per
unit time.
Also, let !i ;t be the proportion of total wealth at date t, Wt ,
allocated to risky asset i , i = 1; :::; n, so that

dW =

"
nX
i=1

!idSi=Si +

 
1�

nX
i=1

!i

!
rdt

#
W � Cdt (3)

=
nX
i=1

!i (�i � r)W dt + (rW � C ) dt +
nX
i=1

!iW�i dzi

Subject to (3), the individual solves:

max
Cs ;f!i;sg;8s ;i

Et

� Z T

t
U (Cs ; s) ds + B(WT ;T )

�
(4)
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Continuous-Time Dynamic Programming

Consider a simpli�ed version of the problem in conditions (3)
to (4) with only one choice and one state variable:

max
fcg

Et

� Z T

t
U(cs ; xs ) ds

�
(5)

subject to
dx = a(x ; c) dt + b(x ; c) dz (6)

where ct is a control (e.g. consumption) and xt is a state
(e.g. wealth). De�ne the indirect utility function, J(xt ; t):

J(xt ; t) = max
fcg

Et

� Z T

t
U(cs ; xs ) ds

�
(7)

= max
fcg

Et

� Z t+�t

t
U(cs ; xs ) ds +

Z T

t+�t
U(cs ; xs ) ds

�
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Continuous-Time Dynamic Programming cont�d

Apply Bellman�s Principle of Optimality :

J(xt ; t) = max
fcg

Et

� Z t+�t

t
U(cs ; xs ) ds + max

fcg
Et+�t

�Z T

t+�t
U(cs ; xs ) ds

� �
= max

fcg
Et

� Z t+�t

t
U(cs ; xs ) ds + J(xt+�t ; t +�t)

�
(8)

For �t small, approximate the �rst integral as U(ct ; xt)�t
and expand J(xt+�t ; t +�t) around xt and t in a Taylor
series:

J(xt ; t) = max
fcg

Et [U(ct ; xt)�t + J(xt ; t) + Jx�x + Jt�t (9)

+
1
2
Jxx (�x)2 + Jxt(�x)(�t) +

1
2
Jtt(�t)2 + o(�t)

�
where o (�t) represents higher-order terms.
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Continuous-Time Dynamic Programming cont�d

The state variable�s di¤usion process (6) is approximated

�x � a(x ; c)�t + b(x ; c)�z + o(�t) (10)

where �z =
p
�te" and e" � N (0; 1). Substituting (10) into

(9), and subtracting J(xt ; t) from both sides,

0 = max
fcg

Et [U(ct ; xt)�t + �J + o(�t)] (11)

where

�J =

�
Jt + Jxa +

1
2
Jxxb2

�
�t + Jxb�z (12)

This is just a discrete-time version of Itô�s lemma. In equation
(11), Et [Jxb�z ] = 0. Divide both sides of (11) by �t.
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Continuous-Time Dynamic Programming cont�d

We can take the limit as �t ! 0:

0 = max
fcg

�
U(ct ; xt) + Jt + Jxa +

1
2
Jxxb2

�
(13)

Equation (13) is the stochastic, continuous-time Bellman
equation and can be rewritten as

0 = max
fcg

[U(ct ; xt) + L[J] ] (14)

where L[�] is the Dynkin operator ; that is, the �drift� term
(expected change per unit of time) in dJ(x ; t) obtained from
applying Itô�s lemma to J.
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Solving the Real Continuous-Time Problem

Returning to the consumption - portfolio choice problem,
de�ne the indirect utility-of-wealth J(W ; x ; t):

J(W ; x ; t) = max
Cs ;f!i;sg;8s ;i

Et

� Z T

t
U(Cs ; s) ds + B(WT ;T )

�
(15)

In this problem, consumption, Ct , and portfolio weights,
f!i ;tg, i = 1; :::; n are the control variables.
Wealth;Wt , and the variables a¤ecting the distribution of
asset returns; xi ;t , i = 1; :::; k are the state variables that
evolve according to (1) and (2), respectively.
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Solving the Continuous-Time Problem

Thus, the Dynkin operator in terms of W and x is

L [J ] =
@J

@t
+

"
nX
i=1

!i (�i � r )W + (rW � C )
#
@J

@W
+

kX
i=1

ai
@J

@xi

+
1

2

nX
i=1

nX
j=1

�ij!i!jW
2 @

2J

@W 2
+

1

2

kX
i=1

kX
j=1

bij
@2J

@xi @xj

+
kX
j=1

nX
i=1

W !i�ij
@2J

@W @xj
(16)

From equation (14) we have

0 = max
Ct ;f!i;tg

[U(Ct ; t) + L[J]] (17)

We obtain �rst-order conditions wrt Ct and !i ;t :
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Solving the Continuous-Time Problem cont�d

0 =
@U (C �; t)

@C
� @J (W ; x ; t)

@W
(18)

0 =W
@J
@W

(�i � r)+W 2 @
2J

@W 2

nX
j=1

�ij!
�
j +W

kX
j=1

�ij
@2J

@xj @W
; (19)

where i = 1,...,n.

Equation (18) is the envelope condition while equation (19)
has the discrete-time analog

Et [Ri ;tJW (Wt+1; t + 1)] = Rf ;tEt [JW (Wt+1; t + 1)] ; i = 1; :::; n
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Solving the Continuous-Time Problem cont�d

De�ne the inverse marginal utility function G = [@U=@C ]�1

and let JW be shorthand for @J=@W . Condition (18) becomes

C � = G (JW ; t) (20)

Denote 
 � [�ij ] as the n� n instantaneous covariance matrix
whose i ; j th element is �ij , and denote vij as the i ; j th element
of 
�1 � [� ij ].
Then the solution to (19) can be written as

!�i = �
JW

JWWW

nX
j=1

� ij (�j�r)�
kX

m=1

nX
j=1

JWxm
JWWW

�jm� ij ; i = 1; : : : ; n

(21)
!�i in (21) depends on �JW = (JWWW ) which is the inverse of
relative risk aversion for lifetime utility of wealth.
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Solving the Continuous-Time Problem cont�d

Assuming speci�c functions for U and the �i�s, �ij�s, and
�ij�s, equations (20) and (21) can be solved in terms of the
state variables W , x , and JW , JWW , and JWxi .

Substituting C � and the !�i back into equation (17) leads to a
nonlinear partial di¤erential equation (PDE) for J that can be
solved subject to J (WT ; xT ;T ) = B(WT ;T ).

In turn, solutions for C �t and the !
�
i ;t in terms of only Wt , and

xt then result from (20) and (21).

If all of the �i�s (including r) and �i�s are constants, asset
returns are lognormally distributed and there is a constant
investment opportunity set.

In this case the only state variable is W , and the optimal
portfolio weights in (21) simplify to
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Constant Investment Opportunities

!�i = � JW
JWWW

nX
j=1

� ij (�j � r); i = 1; : : : ; n (22)

Plugging (20) and (22) back into the optimality equation
(17), and using the fact that [� ij ] � 
�1, we have

0 = U(G ; t) + Jt +

"
nX
i=1

!i (�i � r )W + rW � C
#
JW +

1

2

nX
i=1

nX
j=1

�ij!i!jW
2JWW

= U(G ) + Jt + JW (rW � G ) �
J2W
JWW

nX
i=1

nX
j=1

� ij (�i � r )(�j � r )

+
1

2

nX
i=1

nX
j=1

�ij!i!jW
2 @

2J

@W 2

= U(G ) + Jt + JW (rW � G ) �
J2W
2JWW

nX
i=1

nX
j=1

� ij (�i � r )(�j � r ) (23)
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Constant Investment Opportunities cont�d

This equation can be solved for J and, in turn, C � and !�i
after specifying U.

In any case, since � ij , �j , and r are constants, the proportion
of each risky asset that is optimally held will be proportional
to �JW =(JWWW ) which is common across all assets.
Consequently, the proportion of wealth in risky asset i to risky
asset k is a constant:

!�i
!�k

=

nX
j=1

� ij (�j � r)

nX
j=1

�kj (�j � r)
(24)
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Constant Investment Opportunities cont�d

Therefore, the proportion of risky asset k to all risky assets is

�k =
!�kPn
i=1 !

�
i
=

nX
j=1

�kj (�j � r)

nX
i=1

nX
j=1

� ij (�j � r)
(25)

Since all individuals regardless of U will hold r and the
constant-proportion portfolio of risky assets de�ned by �k , we
obtain a two-fund separation result: all individuals�optimal
portfolios consists of the risk-free asset paying rate of return r
and a single risky asset portfolio having the following expected
rate of return, �, and variance; �2:
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Two-Fund Separation

� �
nX
i=1

�i�i

�2 �
nX
i=1

nX
j=1

�i�j�ij

(26)

Recalling the single-period mean-variance portfolio weights
!� = �V�1

�
R � Rf e

�
, the i th element of this vector of

weights can be written as !�i = �
Pn
j=1 � ij

�
R j � Rf

�
, which

equals (22) when � = �JW = (JWWW ).
Hence, we obtain mean-variance portfolio weights with
lognormally-distributed asset returns since the asset return
di¤usions are locally normal.
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HARA Utility and Constant Investment Opportunities

Analytic solutions to the constant investment opportunity
problem exist with Hyperbolic Absolute Risk Aversion utility:

U(C ; t) = e��t
1� 


�
�C
1�  + �

�
(27)

Optimal consumption in equation (20) is

C � =
1� 
�

�
e�tJW
�

� 1
�1

� (1� )�
�

(28)

and using (22) and (26), the risky-asset portfolio weights are

!� = � JW
JWWW

�� r
�2

(29)
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HARA Utility and Constant Investment Opportunities

Simplify equation (23) to obtain

0 =
(1� )2


e��t
�
e�tJW
�

� 
�1

+ Jt (30)

+

�
(1� )�

�
+ rW

�
JW � J2W

JWW

(�� r)2
2�2

Merton (1971) solves this PDE subject to
J(W ;T ) = B (WT ;T ) = 0, and shows (28) and (29) then
take the form

C �t = aWt + b (31)

and

!�t = g +
h
Wt

(32)
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CRRA and Constant Investment Opportunities

Here a, b, g , and h are, at most, functions of time.

For the special case of constant relative risk aversion where
U (C ; t) = e��tC=, the solution is

J (W ; t) = e��t
"
1� e�{(T�t)

{

#1�
W = (33)

C �t =
{

1� e�{(T�t)
Wt (34)

and
!� =

�� r
(1� )�2 (35)

where { � 
1�

h
�
 � r �

(��r )2
2(1�)�2

i
.
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Implications of Continuous-Time Decisions

When the individual�s planning horizon is in�nite, T !1, a
solution exists only if { > 0.
In this case with T !1 , C �t = {Wt .

Although we obtain the Markowitz result in continuous time,
it is not the same result as in discrete time.

For example, a CRRA individual facing normally distributed
returns and discrete-time portfolio rebalancing will choose to
put all wealth in the risk-free asset.

In contrast, this individual facing lognormally-distributed
returns and continuous portfolio rebalancing chooses
!� = (�� r) =

�
(1� )�2

�
, which is independent of the

time horizon.
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Changing Investment Opporunities

Consider the e¤ects of changing investment opportunities by
simply assuming a single state variable so that k = 1 and x is
a scalar that follows the process

dx = a (x ; t) dt + b (x ; t) d� (36)

where b d��i dzi = �i dt.

The optimal portfolio weights in (21) are

!�i = �
JW

WJWW

nX
j=1

�ij
�
�j � r

�
� JWx
WJWW

nX
j=1

�ij�j ; i = 1; : : : ; n

(37)
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Portfolio Weights with Changing Investment Opportunities

Written in matrix form, equation (37) is

!�=
A
W

�1 (�� re) + H

W

�1� (38)

where !�=(!�1:::!
�
n)
0 is the n � 1 vector of portfolio weights

for the n risky assets; � =(�1:::�n)
0 is the n � 1 vector of

these assets�expected rates of return; e is an n-dimensional
vector of ones, � = (�1; :::; �n)

0, A = � JW
JWW

, and H = � JWx
JWW

.

A and H will, in general, di¤er from one individual to another,
depending on the form of the particular individual�s utility
function and level of wealth.
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Three Fund Theorem

Thus, unlike in the constant investment opportunity set case
(where JWx = H = 0), !�i =!

�
j is not the same for all investors.

A two mutual fund theorem does not hold, but with one state
variable, x , a three fund theorem does hold.

Investors will be satis�ed choosing between
1 A fund holding the risk-free asset.
2 A mean-variance e¢ cient fund with weights 
�1 (�� re).
3 A fund with weights 
�1� that best hedges against changing
investment opportunities.
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Portfolio Demands

Recall JW = UC , which allows us to write
JWW = UCC @C=@W .

Therefore, A can be rewritten as

A = � UC
UCC (@C=@W )

> 0 (39)

by the concavity of U. Also, since JWx = UCC @C=@x ,

H = � @C=@x
@C=@W

R 0 (40)

A is proportional to the reciprocal of the individual�s absolute
risk aversion, so the smaller is A, the smaller in magnitude is
the individual�s demand for any risky asset.
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Hedging Demand

An unfavorable shift in investment opportunities is de�ned as
a change in x such that consumption falls, that is, an increase
in x if @C=@x < 0 and a decrease in x if @C=@x > 0.
For example, suppose 
 is a diagonal matrix, so that �ij = 0
for i 6= j and �ii = 1=�ii > 0, and also assume that �i 6= 0. In
this case, the hedging demand for risky asset i in (38) is

H�ii�i = �
@C=@x
@C=@W

�ii�i > 0 i¤
@C
@x
�i < 0 (41)

Thus, if @C=@x < 0) and if x and asset i are positively
correlated (�i > 0), then there is a positive hedging demand
for asset i ; that is, H�ii�i > 0 and asset i is held in greater
amounts than what would be predicted based on a simple
single-period mean-variance analysis.
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Changing Interest Rate Example

Let r = x and � = re+ p = xe+ p where p is a vector of risk
premia for the risky assets.

Thus, an increase in the risk-free rate r indicates an
improvement in investment opportunities.

Recall that in a simple certainty model with constant
relative-risk-aversion utility, the elasticity of intertemporal
substitution is given by � = 1= (1� ).
When � < 1, implying that  < 0, an increase in the risk-free
rate leads to greater current consumption consistent with
equation (34) where, for the in�nite horizon case Ct =

1�

h
�
 � r �

(��r )2
2(1�)�2

i
Wt where (�� r)2 =�2 is �xed so that

@Ct=@r = �Wt= (1� ).
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Asset Allocation Puzzle

Given empirical evidence that risk aversion is greater than log
( < 0), the intuition from these simple models would be that
@Ct=@r > 0 and is increasing in risk aversion.
From equation (41) we have

H�ii�i = �
@C=@r
@C=@W

�ii�i > 0 i¤
@C
@r
�i < 0 (42)

Thus, there is a positive hedging demand for an asset that is
negatively correlated with changes in the interest rate, r .
An obvious candidate asset is a long-maturity bond.
This insight can explain why �nancial planners recommend
both greater cash and a greater bonds-to-stocks mix for more
risk-averse investors (the Asset Allocation Puzzle of Canner,
Mankiw, and Weil AER 1997).
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Log Utility

Logarithmic utility is one of the few cases in which analytical
solutions are possible for consumption and portfolio choices
when investment opportunities are changing.
Suppose U(Cs ; s) = e��s ln (Cs ) and B (WT ;T ) =
e��T ln (WT ).
Consider a trial solution to (17) for the indirect utility
function of the form J (W ; x ; t) = d (t)U (Wt ; t) + F (x ; t)
= d (t) e��t ln (Wt) + F (x ; t).
If so, then (20) is

C �t =
Wt

d (t)
(43)

and (37) simpli�es to

!�i =
Pn
j=1 �ij

�
�j � r

�
(44)
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Log Utility

Substituting C �t and !
�
i into the Bellman equation (17):

0 = U (C �t ; t) + Jt + JW [rWt � C �t ] + a (x ; t) Jx

+
1
2
b (x ; t)2 Jxx �

J2W
2JWW

nX
i=1

nX
j=1

�ij
�
�j � r

�
(�i � r)

= e��t ln
�
Wt

d (t)

�
+ e��t

�
@d (t)
@t

� �d (t)
�
ln [Wt ] + Ft

+e��td (t) r � e��t + a (x ; t)Fx +
1
2
b (x ; t)2 Fxx

+
d (t) e��t

2

nX
i=1

nX
j=1

�ij
�
�j � r

�
(�i � r)

(45)
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Log Utility

Simplifying, the equation becomes

0 = � ln [d (t)] +
�
1+

@d (t)
@t

� �d (t)
�
ln [Wt ] + e�tFt

+d (t) r � 1+ a (x ; t) e�tFx +
1
2
b (x ; t)2 e�tFxx

+
d (t)
2

nX
i=1

nX
j=1

�ij
�
�j � r

�
(�i � r)

(46)
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Log Utility

Since a solution must hold for all values of wealth, we must
have

@d (t)
@t

� �d (t) + 1 = 0 (47)

subject to the boundary condition d (T ) = 1.

The solution to this �rst-order ordinary di¤erential equation is

d (t) =
1
�

h
1� (1� �) e��(T�t)

i
(48)
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Log Utility

The complete solution to (46) is then to solve

0 = � ln [d (t)] + e�tFt + d (t) r � 1+ a (x ; t) e�tFx (49)

+
1
2
b (x ; t)2 e�tFxx +

d (t)
2

nX
i=1

nX
j=1

�ij
�
�j � r

�
(�i � r)

subject to the boundary condition F (x ;T ) = 0.

The solution depends on how r , the �i�s, and 
 are assumed
to depend on the state variable x .

However, these relationships in�uence only the level of indirect
utility via F (x ; t) and do not a¤ect C �t and !

�
i .
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Log Utility

Substituting (48) into (43), consumption is

Ct =
�

1� (1� �) e��(T�t)
Wt (50)

which is comparable to our earlier discrete-time problem.

The log utility investor behaves myopically by having no desire
to hedge against changes in investment opportunities, though
the portfolio weights !�i =

Pn
j=1 �ij

�
�j � r

�
will change over

time as �ij , �j , andr change.
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The Martingale Approach

Modify process (1) to write the return on risky i as

dSi=Si = �idt +�idZ, i = 1; :::; n (51)

where �i = (�i1:::�in) is a 1� n vector of volatility terms and
dZ = (dz1:::dzn)0 is an n �1 vector of independent Brownian
motions.

�i , �i , and r (t) may be functions of state variables driven by
the Brownian motion elements of dZ.

If � is the n � n matrix whose i th row equals �i , then the
covariance matrix of the assets�returns is 
 � ��0.
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Complete Market Assumptions

Importantly, we now assume that uncertain changes in the
means and covariances of the asset return processes in (51)
are driven only by the vector dZ.
Equivalently, each state variable, say xi as represented in (2),
has a Brownian motion process, d� i , that is a linear function
of dZ.
Thus, changes in investment opportunities can be perfectly
hedged by the n assets so that markets are dynamically
complete.
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Pricing Kernel

Using a Black-Scholes hedging argument and the absence of
arbitrage, we showed that a stochastic discount factor exists
and follows the process

dM=M = �rdt ��(t)0 dZ (52)

where � = (�1:::�n)
0 is an n � 1 vector of market prices of

risks associated with each Brownian motion and

�i � r = �i�, i = 1; :::; n (53)
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Optimal Consumption Plan

Note that the individual�s wealth equals the expected
discounted value of the dividends (consumption) that it pays
over the individual�s planning horizon plus discounted terminal
wealth

Wt = Et

�Z T

t

Ms

Mt
Csds +

MT

Mt
WT

�
(54)

Equation (54) can be interpreted as an intertemporal budget
constraint.
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Static Optimization Problem

The choice of consumption and terminal wealth can be
transformed into a static optimization problem by the
following Lagrange multiplier problem:

max
Cs8s2[t ;T ];WT

Et

�Z T

t
U (Cs ; s) ds + B (WT ;T )

�
+ �

�
MtWt � Et

�Z T

t
MsCsds +MTWT

��
(55)

Later, we address the portfolio choice problem that would
implement the consumption plan.
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First Order Conditions

Treating the integrals in (55) as summations over in�nite
points in time, the �rst-order conditions for optimal
consumption at each date and for terminal wealth are

@U (Cs ; s)
@Cs

= �Ms , 8s 2 [t;T ] (56)

@B (WT ;T )
@WT

= �MT (57)

De�ne the inverse functions G = [@U=@C ]�1 and
GB = [@B=@W ]

�1:

C �s = G (�Ms ; s) , 8s 2 [t;T ] (58)

W �
T = GB (�MT ;T ) (59)
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Determining the Lagrange multiplier

Substitute (58) and (59) into (54) to obtain

Wt = Et

�Z T

t

Ms

Mt
G (�Ms ; s) ds +

MT

Mt
GB (�MT ;T )

�
(60)

Given the initial wealth, Wt , the distribution of Ms from (52),
and the forms of the utility and bequest functions (which
determine G and GB ), the expectation in equation (60) can
be calculated to determine � as a function of Wt , Mt , and
any date t state variables.
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Alternative Solution for the Multiplier

Since Wt represents a contingent claim that pays a dividend
equal to consumption, it must satisfy a particular
Black-Scholes-Merton partial di¤erential equation (PDE).
For example, assume that �i , �i , and r (t) are functions of a
single state variable, say, xt , that follows the process

dx = a (x ; t) dt + B (x ; t)0 dZ (61)

where B (x ; t) = (B1:::Bn)0 is an n � 1 vector of volatilities
multiplying the Brownian motion components of dZ.
Based on (60) and the Markov nature of Mt in (52) and xt in
(61), the date t value of optimally invested wealth is a
function of Mt and xt and the individual�s time horizon,
W (Mt ; xt ; t).
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Wealth Process

By Itô�s lemma, W (Mt ; xt ; t) follows the process

dW = WMdM +Wxdx +
@W
@t
dt +

1
2
WMM (dM)

2

+WMx (dM) (dx) +
1
2
Wxx (dx)

2

= �W dt +�
0
W dZ (62)

where

�W � �rMWM + aWx +
@W
@t

+
1
2
�0�M2WMM (63)

��0BMWMx +
1
2
B0BWxx

�W� �WMM�+WxB (64)
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No Arbitrage Condition for Wealth

The expected return on wealth must earn the instantaneous
risk-free rate plus its risk premium:

�W + G (�Mt ; t) = rWt +�
0
W� (65)

Substituting in for �W and �0W leads to the PDE

0 = �0�M2WMM

2
��0BMWMx + B0B

Wxx

2
+
�
�0�� r

�
MWM

+
�
a� B0�

�
Wx +

@W
@t

+ G (�Mt ; t)� rW (66)

which is solved subject to the boundary condition
W (MT ; xT ;T ) = GB (�MT ;T ).
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Solution for Consumption

Either equation (60) or (66) leads to the solution
W (Mt ; xt ; t;�) =Wt that determines � as a function of Wt ,
Mt , and xt .

The solution for � is then be substituted into (58) and (59) to
obtain C �s (Ms ) and W �

T (MT ).

When the individual follows this optimal policy, it is time
consistent in the sense that should the individual resolve the
optimal consumption problem at some future date, say, s > t,
the computed value of � will be the same as that derived at
date t.
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Portfolio Allocation

Market completeness permits replication of the individual�s
optimal process for wealth and its consumption dividend.

The individual�s wealth follows the process

dW = !0 (�� re)W dt + (rW �Ct) dt +W!0�dZ (67)

where ! =(!1:::!n)
0 are portfolio weights and � =(�1:::�n)

0

are assets�expected rates of return.

Equating the coe¢ cients of wealth�s Brownian motions in
(67) and (62) implies W!0�=�0W .

Substituting in (64) for �W and rearranging:

! = �MWM

W
�0
�1
�+

Wx

W
�0
�1B (68)
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Optimal Portfolio Weights

The no-arbitrage condition (53) in matrix form is

�� re = �� (69)

Using (69) to substitute for �, equation (68) is

! = �MWM

W
��1�0

�1
(�� re)+Wx

W
�0
�1B

= �MWM

W

�1 (�� re)+Wx

W
�0
�1B (70)

A comparison to (38) for the case of perfect correlation
between assets and state variables shows that MWM =
JW =JWW and Wx = �JWx=JWW .
Given W (M; x ; t) in (60) or (66), the solution is complete.
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Example of Wachter JFQA (2002)

Let there be a risk-free asset with contant rate of return
r > 0, and a single risky asset with price process

dS=S = � (t) dt + �dz (71)

Volatility, �, is constant but the market price of risk,
� (t) = [� (t)� r ] =�, satis�es the Ornstein-Uhlenbeck process

d� = a
�
� � �

�
dt � bdz (72)

where a, �, and b are positive constants.

Since � (t) = r + � (t)� so that d� = �d�, the expected rate
of return is lower (higher) after its realized return has been
high (low).
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Individual�s Expected Utility

With CRRA and a zero bequest, (55) is

max
Cs8s2[t ;T ]

Et

�Z T

t
e��s

C


ds
�
+�

�
MtWt � Et

�Z T

t
MsCsds

��
(73)

The �rst-order condition (58) is

C �s = e
� �s
1� (�Ms )

� 1
1� , 8s 2 [t;T ] (74)

so that (60) is

Wt = Et

�Z T

t

Ms

Mt
e�

�s
1� (�Ms )

� 1
1� ds

�
(75)

= �
� 1
1�M�1

t

Z T

t
e�

�s
1� Et

�
M
� 
1�

s

�
ds
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Wealth and the Pricing Kernel

Et

�
M
� 
1�

s

�
could be computed by noting that

dM=M = �rdt � �dz and � follows the process in (72).
Alternatively, Wt can be solved using PDE (66):

0 =
1
2
�2M2WMM + �bMWM� +

1
2
b2W�� +

�
�2 � r

�
MWM

+
�
a
�
� � �

�
+ b�

�
W� +

@W
@t

+ e�
�t
1� (�Mt)

� 1
1� � rW

(76)

subject to boundary condition W (MT ; �T ;T ) = 0.
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Solution

When  < 0, so the individual is more risk averse than log
utility, the solution to (76) is

Wt = (�Mt)
� 1
1� e�

�t
1�

Z T�t

0
H (�t ; �) d� (77)

where H (�t ; �) is the exponential of a quadratic function of
�t given by

H (�t ; �) � e
1

1�

�
A1(�)

�2t
2 +A2(�)�t+A3(�)

�
(78)
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Solution �continued

and where

A1 (�) � 2c1 (1� e�c3� )
2c3 � (c2 + c3) (1� e�c3� )

A2 (�) �
4c1a�

�
1� e�c3�=2

�2
c3 [2c3 � (c2 + c3) (1� e�c3� )]

A3 (�) �
Z �

0

�
b2A22 (s)
2 (1� ) +

b2A1 (s)
2

+ a�A2 (s) + r � �
�
ds

with c1 � = (1� ), c2 � �2 (a+ c1b), and
c3 �

q
c22 � 4c1b2= (1� ).
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Optimal Consumption

Equation (77) can be inverted to solve for �, but since from

(74) (�Mt)
� 1
1� e�

�t
1� = C �t , (77) can be rewritten

C �t =
WtR T�t

0 H (�t ; �) d�
(79)

Note that wealth equals the value of consumption from now
until T � t periods into the future.
Therefore, since

R T�t
0 H (�t ; �) d� =Wt=C �t , the function

H (�t ; �) equals the value of consumption � periods in the
future scaled by current consumption.
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Consumption Implications

When  < 0 and �t > 0, so that � (t)� r > 0, then
@ (C �t =Wt) =@�t > 0; that is, the individual consumes a
greater proportion of wealth the larger is the risky asset�s
excess rate of return.

This is what one expects given our earlier analysis showing
that the "income" e¤ect dominates the "substitution" e¤ect
when risk aversion is greater than that of log utility.
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Portfolio Choice

The weight (70) for a single risky asset is

! = �MWM

W
� (t)� r
�2

� W�

W
b
�

(80)

Using (77), �MWM=W = 1= (1� ) and W� can be
computed. Substituting these two derivatives into (80) gives

! =
� (t)� r
(1� )�2 �

b
R T�t
0 H (�t ; �) [A1 (�) �t + A2 (�)] d�

(1� )�
R T�t
0 H (�t ; �) d�

=
� (t)� r
(1� )�2 (81)

� b
(1� )�

Z T�t

0

H (�t ; �)R T�t
0 H (�t ; ��) d��

[A1 (�) �t + A2 (�)] d�
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Portfolio Implications

The �rst term of (81) is the mean-variance e¢ cient portfolio.

The second term is the hedging demand.

A1 (�) and A2 (�) are negative when  < 0, so that if �t > 0,
the term [A1 (�) �t + A2 (�)] is unambiguously negative and,
therefore, the hedging demand is positive.

Hence, individuals more risk averse than log invest more
wealth in the risky asset than if investment opportunities were
constant.

Because of negative correlation between risky-asset returns
and future investment opportunities, overweighting in the
risky asset means that unexpectedly good returns today hedge
against returns that are expected to be poorer tomorrow.
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Summary

We considered an individual�s continuous-time consumption
and portfolio choice problem when asset returns followed
di¤usion processes.

With constant investment opportunities, asset returns are
lognormally distributed and optimal portfolio weights are
similar to those of the single-period mean-variance model.

With changing investment opportunities, optimal portfolio
weights re�ect demand components that seek to hedge
against changing investment opportunities.

The Martingale Approach to solving for an individual�s
optimal consumption and portfolio choices is applicable to a
complete markets setting where asset returns can perfectly
hedge against changes in investment opportunities.
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