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Introduction

Using a mixture of jump and di¤usion processes can model
asset prices that are subject to large, discontinuous changes,
as might occur following the revelation of important
information.

Itô�s lemma can be extended to derive the process of a
variable that is a function of a mixed jump-di¤usion process.

When asset prices follow jump-di¤usion processes, markets for
contingent claims will, in general, be incomplete, requiring
additional assumptions for valuation.
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Modeling Jumps in Continuous Time

Consider the continuous-time process:

dS=S = (�� �k) dt + � dz + 
 (Y ) dq (1)

where dz is a standard Wiener (Brownian motion) process and
q (t) is a Poisson counting process that increases by 1 if a
Poisson-distributed event occurs.

dq (t) satis�es

dq =
�
1 if a jump occurs
0 otherwise

(2)
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Model Assumptions cont�d

During each time interval, dt, the probability that q (t)
augments by 1 is � (t) dt, where � (t) is the Poisson intensity.

When a Poisson event occurs, say, at date bt, S changes
discontinuously, equal to dS = 
 (Y ) S where 
 is a function
of Y

�bt� which is a random variable realized at date bt.
Thus, if a Poisson event occurs at date bt, then
dS
�bt� = S �bt+�� S �bt�� = 
 (Y ) S �bt��, or

S
�bt+� = [1+ 
 (Y )]S �bt�� (3)
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Model Assumptions cont�d

If 
 (Y ) > 0, there is an upward jump in S ; whereas if

 (Y ) < 0, there is a downward jump in S .

De�ne k � E [
 (Y )] as the expected proportional jump when
a Poisson event occurs, so that the expected change in S
from 
 (Y ) dq over the time interval dt is � k dt.

If � denotes the instantaneous total expected rate of return
(rate of change) on S , then:

E [dS=S ] = E [(�� �k) dt] + E [� dz] + E [
 (Y ) dq](4)

= (�� �k) dt + 0 + � k dt = � dt
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Comment on Generality

Jump-di¤usion processes can be generalized to a multivariate
setting where the process for S (t) can depend on multiple
Brownian motion and Poisson jump components.

If � (t) depends on a random state variable x (t), where for
example, dx (t) follows a di¤usion process, then � (t; x (t)) is
called a doubly stochastic Poisson process or Cox process.
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Itô�s Lemma for Jump-Di¤usions

Let c(S ; t) be a twice-di¤erentiable function of S(t), where
S (t) follows (1). An extension of Itô�s lemma implies:

dc = cs [ (�� �k)S dt + �S dz ] +
1
2
css�2S2 dt + ct dt

+ fc ([1+ 
 (Y )]S ; t)� c(S ; t)g dq (5)

where subscripts on c denote its partial derivatives.

When S jumps, c(S ; t) jumps to c ([1+ 
 (Y )]S ; t).

Denote �cdt as the instantaneous expected rate of return on
c per unit time, that is, E [dc=c] = �cdt. Also, de�ne �c as
the standard deviation of the instantaneous rate of return on
c , conditional on a jump not occurring.
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Itô�s Lemma for Jump-Di¤usions

Then (5) is

dc=c = [�c � �kc (t)] dt + �cdz + 
c (Y ) dq (6)

where

�c � 1
c

�
cs (�� �k) S +

1
2
css�2S2 + ct

�
+ �kc (t)(7)

�c � cs
c
�S (8)


c = [c ([1+ 
 (Y )]S ; t)� c (S ; t)] =c (S ; t) (9)

kc (t) � Et [c ([1+ 
 (Y )]S ; t)� c (S ; t)] =c (S ; t) (10)

Here, kc (t) is the expected proportional jump of the variable
c (S ; t) given that a Poisson event occurs.
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Valuing Contingent Claims

For simplicity, assume that � is constant over time and that

 (Y ) = (Y � 1): at the time of a jump S

�bt�� goes to
S
�bt+� = YS �bt��. Also assume that successive random jump

sizes, (eY � 1), are independently and identically distributed.
If � and � are constants, so that the continuous component
of S(t) is lognormal, then conditional upon n jumps in the
interval (0; t):

~S(t) = S(0) e(��
1
2�

2��k) t +�(ezt�z0) ~y(n) (11)

where ~zt � z0 � N(0; t). ~y(0) = 1 and ~y(n) =
nY
i=1

~Yi for

n � 1 where f ~Yigni=1 is a set of independent identically
distributed jumps.
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Hedge Portfolio

Similar to a Black-Scholes hedge, consider a portfolio invested
in the underlying asset, contingent claim, and risk-free asset
having portfolio proportions !1, !2, and !3 = 1� !1 � !2,
respectively.

The portfolio�s instantaneous rate of return is

dH=H = !1 dS=S + !2 dc=c + (1� !1 � !2)r dt (12)

= [!1(�� r) + !2(�c � r) + r � �(!1k + !2kc ) ] dt
+(!1� + !2�c ) dz + [!1
 (Y ) + !2
c (Y )] dq
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Imperfect Hedge

Though jumps in the asset and the contingent claim occur
simultaneously, their relative size, 


�eY� =
c �eY�, is
unpredictable due to possible nonlinearities.

Hence, a predetermined hedge ratio, !1=!2, that would
eliminate all portfolio risk does not exist.

The implication is that one cannot perfectly replicate the
contingent claim�s payo¤ by a portfolio composed of the
underlying asset and the risk-free asset, making the market
incomplete.
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Imperfect Hedge cont�d

Suppose one sets !�1=!
�
2 = ��c=� = �csS=c to eliminate

only the Brownian motion risk. This leads to:

dH=H = [!�1 (�� r) + !�2 (�c � r) + r � � (!�1 k + !�2 kc )] dt
+ [!�1
 (Y ) + !�2
c (Y )] dq (13)

Using the de�nitions of 
, 
c , and !
�
1 = �!�2csS=c , the jump

term, [!�1
 (Y ) + !�2
c (Y )] dq, then equals(
!�2

h
c(S ~Y ; t)�c(S ; t)

c(S ; t) � cs (S ; t)S
~Y�S

c(S ; t)

i
if a jump occurs

0 otherwise
(14)
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An Imperfect Hedge cont�d

Consider the pattern of pro�ts and losses on the (quasi-)
hedge portfolio if the contingent claim is a European option
on a stock with a time until maturity of � and a strike price X .

If as in (1), the rate of return on the stock is independent of
its price level, then the absence of arbitrage restricts the
option price to a convex function of the asset price.

As shown in Figure 11.1, the option�s convexity implies that
c(SY ; t)� c(S ; t)� cs (S ; t)[SY � S ] � 0 for all Y and t.
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Jump Risk

S Xe­rτ

c(S)

SY

c(SY)

cS[SY­S]

Asset Price

Option
Price

Figure: Hedge Portfolio Return with Jump
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An Imperfect Hedge cont�d

This fact and (14) implies that the unanticipated return on the
hedge portfolio has the same sign as !�2, so that the expected
portfolio jump size, !�1k + !

�
2kc , also has the same sign as !

�
2.

Thus, an option writer who implements the hedge earns, most
of the time, more than the portfolio�s expected rate of return.

However, on those rare occasions when the underlying asset
price jumps, a relatively large loss is incurred.
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Diversi�able Jump Risk

The hedge portfolio is exposed to jump risk which, in general,
may have a �market price.�

However, if one assumes that this jump risk is the result of
purely �rm speci�c information and, hence, is perfectly
diversi�able, it would have a market price of zero.

In this case, the hedge portfolio�s expected rate of return must
equal the risk-free rate, r :

!�1(�� r) + !�2(�c � r) + r = r (15)

or
!�1=!

�
2 = ��c=� = �(�c � r)=(�� r) (16)
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Diversi�able Jump Risk

Let the contingent claim�s time until maturity be � � T � t,
and write its price as c (S ; �).

Using (16) and substituting in for �c and �c from the
de�nitions (7) and (8), we obtain:

1
2
�2S2css+(r��k)Scs�c��rc+�Et

h
c(S ~Y ; �)� c(S ; �)

i
= 0

(17)
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Diversi�able Jump Risk

For a call option, this is solved subject to the boundary
conditions c(0; �) = 0 and c(S (T ) ; 0) = max[S (T )� X ; 0].

Note that when � = 0, equation (17) is the standard
Black-Scholes equation, which has the solution

b(S ; � ;X ; �2; r) � S N(d1) � Xe�r� N(d2) (18)

where d1 = [ ln(S=X ) + (r + 1
2�

2)� ] = (�
p
�) and

d2 = d1 � �
p
� .
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Diversi�able Jump Risk

Robert Merton (1976) shows that the general solution to (17)
is

c(S ; �) =
1X
n=0

e�� � (� �)n

n!
Et
h
b(S ~y(n)e��k� ; � ;X ; �2; r)

i
(19)

where recall, ~y(0) = 1 and ~y(n) =
nY
i=1

~Yi for n � 1.

The intuition behind the formula in (19) is that the option is
a probability-weighted average of expected Black-Scholes
option prices.
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Lognormal Jump Proportions

Suppose ~Y is lognormally distributed, where
E [ln ~Y ] � �� 1

2�
2 where var [ln ~Y ] � �2, so that

E [ ~Y ] = e� = 1+ k.

Hence, � � ln(1+ k). Also if � is assumed to be constant,
the probability density for ln[S(t + �)], conditional on the
value of S(t), is

1X
n=0

g(ln[S(t + �)=S(t)] j n)h(n) (20)

where g(� j n) is the conditional density function given that n
jumps occur during the interval between t and t + � , and h(n)
is the probability that n jumps occur between t and t + � .
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Lognormal Jump Proportions

The values of these expressions are

g
�
ln
�
S (t + �)
S(t)

�
j n
�

�

exp

24�
�
ln
h
S(t+�)
S(t)

i
�
�
���k+ n�

�
� �2n

2

�
�

�2
2�2n�

35
p
2��2n�

(21)

h (n) � e��� (��)n

n!
(22)

where �2n � �2 + n�2=� is the �average�variance per unit
time.
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Solution

Setting � = r allows us to compute the date t risk-neutral
expectation of max[S (T )� X ; 0], discounted by the risk-free
rate, and conditional on n jumps occurring:

Et [ b(S~y(n)e�� k � ; � ;X ; �2; r)] = e�� k � (1+ k)n bn(S ; �)
(23)

where bn(S ; �) � b(S ; � ;X ; �2n; rn) and where
rn � r � �k + n�=� .
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Solution

The value of the option is then the weighted average of these
conditional values, where each weight equals the probability
that a Poisson random variable with characteristic parameter
�� will equal n.

De�ning �0 � �(1+ k), this equals

c(S ; �) =
1X
n=0

e�� � (� �)n

n!
e�� k � (1+ k)n bn(S ; �)

=
1X
n=0

e��
0 � (�0 �)n

n!
bn(S ; �) (24)
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Nondiversi�able Jump Risk

In some cases, such as a stock market crash, it is unrealistic
to assume a zero market price of jump risk.

Equilibrium models, such as Bates (1991) and Naik and Lee
(1990), can be used to derive the equilibrium market price of
jump risk when aggregate wealth is subject to jumps.

Under particular assumptions, formulas for options will take a
form similar to (24).
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Black-Scholes versus Jump-Di¤usion Model

Empirically, the standard Black-Scholes model underprices
out-of-the-money and in-the-money options relative to
at-the-money-options, a phenomenon referred to as a volatility
smile or volatility smirk.

A model that permits the underlying asset�s price to jump
(positive or negative) can generate an asset price distribution
that has fatter tails than the lognormal.

With extreme price changes more likely, a jump-di¤usion
option pricing model can better match the market prices of
many types of options.
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Black-Scholes versus Jump-Di¤usion Model

To account for time variation in implied option volatility,
stochastic volatility option pricing models assume that the
underlying asset price follows a di¤usion process such as
dS=S = �dt + �tdz .
However, the volatility, �t , follows a mean-reverting process of
the form d�t = � (�t) dt + � (�t) dz�, where dz� is another
Brownian motion process possibly correlated with dz .
Similar to the jump-di¤usion model, one must assign a market
price of risk associated with the volatility uncertainty re�ected
in the dz� term.
To capture both time variation in volatilities and volatility
smiles and smirks, it appears that an option price model
permitting both stochastic volatility and jumps is required
(Bates (2002), Bakshi, Cao, and Chen (1997)).
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Summary

The mixed jump-di¤usion process captures more realistic asset
price dynamics, but the market for the asset and its
contingent claim will, in general, be incomplete.

Additional theory is needed to assign a market price of jump
risk.

However, since the actual prices of many types of options
appear to re�ect the likelihood of extreme movements in the
underlying asset�s price, the jump-di¤usion model has better
empirical performance.

We next study continuous-time consumption and portfolio
choices, which will allow us to derive assets�equilibrium risk
premia in a continuous-time economy.
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