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Introduction

A contingent claim’s price process can be transformed into a
martingale process by

1 Adjusting its Brownian motion by the market price of risk.
2 Deflating by a riskless asset price.

The claim’s value equals the expectation of the transformed
process’s future payoff.

We derive the continuous-time state price deflator that
transforms actual probabilities into risk-neutral probabilities.

Valuing a contingent claim might be simplified by deflating
the contingent claim’s price by that of another risky asset.

We consider applications: options on assets that pay a
continuous dividend; the term structure of interest rates.
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Arbitrage and Martingales

Let S be the value of a risky asset that follows a general
scalar diffusion process

dS = µSdt + σSdz (1)

where both µ = µ (S , t) and σ = σ (S , t) may be functions of
S and t and dz is a Brownian motion.
Itô’s lemma gives the process for a contingent claim’s price,
c(S , t):

dc = µccdt + σccdz (2)

where µcc = ct + µScS + 1
2σ

2S2cSS and σcc = σScS , and the
subscripts on c denote partial derivatives.
Consider a hedge portfolio of −1 units of the contingent claim
and cS units of the risky asset.
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Arbitrage and Martingales cont’d

The value of this hedge portfolio, H, satisfies

H = −c + cSS (3)

and the change in its value over the next instant is

dH = −dc + cSdS (4)

= −µccdt − σccdz + cSµSdt + cSσSdz

= [cSµS − µcc] dt

In the absence of arbitrage, the riskless portfolio change must
be H(t)r(t)dt:

dH = [cSµS − µcc] dt = rHdt = r [−c + cSS ]dt (5)
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Arbitrage and Martingales cont’d

This no-arbitrage condition for dH implies:

cSµS − µcc = r [−c + cSS ] (6)

Substituting µcc = ct + µScS + 1
2σ

2S2cSS into (6) leads to
the Black-Scholes equation:

1
2
σ2S2cSS + rScS − rc + ct = 0 (7)

However, a different interpretation of (6) results from
substituting cS = σc c

σS (from σcc = σScS ):

µ− r
σ

=
µc − r
σc

≡ θ (t) (8)

No-arbitrage condition (8) requires a unique market price of
risk, say θ (t), so that µc = r + σcθ (t) .
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A Change in Probability

Substituting for µc in (2) gives

dc = µccdt + σccdz = [rc + θσcc] dt + σccdz (9)

Next, consider a new process ẑt = zt +
∫ t
0 θ (s) ds, so that

dẑt = dzt + θ (t) dt.
Then substituting dzt = dẑt − θ (t) dt in (9):

dc = [rc + θσcc] dt + σcc [dẑ − θdt]
= rcdt + σccdẑ (10)

If ẑt were a Brownian motion, future values of c generated by
dẑ occur under the Q or “risk-neutral”probability measure.
The actual or “physical”distribution, P, is generated by the
dz Brownian motion.

George Pennacchi University of Illinois

Arbitrage, Martingales, and Pricing Kernels 6/ 37



10.1: Martingales 10.2: Kernels 10.3: Alternative 10.4: Applications 10.5: Summary

Girsanov’s Theorem

Let dPT be the instantaneous change in the cumulative
distribution at date T generated by dzt (the physical pdf).
dQT is the analogous risk-neutral pdf generated by dẑt .
Girsanov’s theorem says that at date t < T , the two
probability densities satisfy

dQT = exp
[
−
∫ T

t
θ (u) dz − 1

2

∫ T

t
θ (u)2 du

]
dPT

= (ξT /ξt) dPT (11)

where ξt is a positive random process depending on θ (t) and
zt :

ξτ = exp
[
−
∫ τ

0
θ (u) dz − 1

2

∫ τ

0
θ (u)2 du

]
(12)
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Girsanov’s Theorem cont’d

Thus, multiplying the physical pdf, dPT , by ξT /ξt leads to
the risk-neutral pdf, dQT , and since ξT /ξt > 0, whenever
dPT has positive probability, so does dQT , making them
equivalent measures.

Yet if θ (t) > 0, then a positive dz innovation lowers ξτ ,
making the risk-neutral probability of a high zt state less than
its physical probability.

Rearranging (11) gives the Radon-Nikodym derivative:

dQT
dPT

= ξT /ξt (13)

Later we will relate this derivative to the continuous-time
pricing kernel.
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Money Market Deflator

Let B (t) be the value of an instantaneous-maturity riskless
“money market fund” investment:

dB/B = r(t)dt (14)

Note that B (T ) = B (t) e
∫ T
t r (u)du for any date T ≥ t.

Now define C (t) ≡ c(t)/B(t) as the deflated price process for
the contingent claim and use Itô’s lemma:

dC =
1
B
dc − c

B2
dB (15)

=
rc
B
dt +

σcc
B
dẑ − r c

B
dt

= σcCdẑ

since dcdB = 0 and we substitute for dc from (10).
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Money Market Deflator cont’d

An implication of (15) is

C (t) = Êt [C (T )] ∀T ≥ t (16)

where Êt [·] denotes the expectation operator under the
probability measure generated by dẑ .

Thus, C (t) is a martingale (random walk) process.

Note that (16) holds for any deflated non-dividend-paying
contingent claim, including C = S

B .

Later, we will consider assets that pay dividends.
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Feynman-Kac Solution

Rewrite (16) in terms of the undeflated contingent claims
price:

c(t) = B(t)Êt

[
c (T )

1
B (T )

]
(17)

= Êt
[
e−

∫ T
t r (u)duc (T )

]
Equation (17) is the “Feynman-Kac” solution to the
Black-Scholes PDE and does not require knowledge of θ(t).

This is the continuous-time formulation of risk-neutral pricing:
risk-neutral (or Q measure) expected payoffs are discounted
by the risk-free rate.
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Arbitrage and Pricing Kernels

Recall from the single- or multi-period consumption-portfolio
choice problem with time-separable utility:

c (t) = Et [mt ,T c (T )] (18)

= Et

[
MT

Mt
c (T )

]
where date T ≥ t, mt ,T ≡ MT /Mt and Mt = Uc (Ct , t).

Rewriting (18):

c (t)Mt = Et [c (T )MT ] (19)

which says that the deflated price process, c (t)Mt , is a
martingale under P (not Q).

George Pennacchi University of Illinois

Arbitrage, Martingales, and Pricing Kernels 12/ 37



10.1: Martingales 10.2: Kernels 10.3: Alternative 10.4: Applications 10.5: Summary

Arbitrage and Pricing Kernels cont’d

Assume that the state price deflator, Mt , follows a strictly
positive diffusion process of the general form

dMt = µmdt + σmdz (20)

Define cm = cM and apply Itô’s lemma:

dcm = cdM +Mdc + (dc) (dM) (21)

= [cµm +Mµcc + σccσm ] dt + [cσm +Mσcc] dz

If cm = cM satisfies (19), that is, cm is a martingale, then its
drift in (21) must be zero, implying

µc = −µm
M
− σcσm

M
(22)
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Arbitrage and Pricing Kernels cont’d

Consider the case in which c is the instantaneously riskless
investment B (t); that is, dc (t) = dB (t) = r (t)Bdt so that
σc = 0 and µc = r (t).
From (22), this requires

r (t) = −µm
M

(23)

Thus, the expected rate of change of the pricing kernel must
equal minus the instantaneous risk-free interest rate.
Next, consider the general case where the asset c is risky, so
that σc 6= 0. Using (22) and (23) together, we obtain

µc = r (t)− σcσm
M

(24)

or
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Arbitrage and Pricing Kernels cont’d

µc − r
σc

= −σm
M

(25)

Comparing (25) to (8), we see that

−σm
M

= θ (t) (26)

Thus, the no-arbitrage condition implies that the form of the
pricing kernel must be

dM/M = −r (t) dt − θ (t) dz (27)
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Arbitrage and Pricing Kernels cont’d

Define mt ≡ lnMt so that dm = −[r + 1
2θ
2]dt − θdz .

We can rewrite (18) as

c (t) = Et [c (T )MT /Mt ] = Et
[
c (T ) emT−mt

]
(28)

= Et
[
c (T ) e−

∫ T
t [r (u)+ 1

2 θ
2(u)]du−

∫ T
t θ(u)dz

]
Since the price under the money-market deflator (Q measure)
and the SDF (P measure) must be the same, equating (17)
and (28) implies

Êt
[
e−

∫ T
t r (u)duc (T )

]
= Et [c (T )MT /Mt ] (29)

= Et
[
e−

∫ T
t r (u)duc (T ) e−

∫ T
t

1
2 θ
2(u)du−

∫ T
t θ(u)dz

]
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Linking Valuation Methods

Substituting the definition of ξτ from (12) leads to

Êt
[
e−

∫ T
t r (u)duc (T )

]
= Et

[
e−

∫ T
t r (u)duc (T ) (ξT /ξt)

]
Êt [C (T )] = Et [C (T ) (ξT /ξt)] (30)∫
C (T ) dQT =

∫
C (T ) (ξT /ξt) dPT

where C (t) = c (t) /B (t). Thus, relating (29) to (30):

MT /Mt = e−
∫ T
t r (u)du (ξT /ξt) (31)

Hence, MT /Mt provides both discounting at the risk-free rate
and transforming the probability distribution to the
risk-neutral one via ξT /ξt .
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Multivariate Case

Consider a multivariate extension where asset returns depend
on an n× 1 vector of independent Brownian motion processes,
dZ = (dz1...dzn)′ where dzidzj = 0 for i 6= j .

A contingent claim whose payoff depended on these asset
returns has the price process

dc/c = µcdt + ΣcdZ (32)

where Σc is a 1× n vector Σc = (σc1...σcn).

Let the corresponding n × 1 vector of market prices of risks
associated with each of the Brownian motions be
Θ = (θ1...θn)′.
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Multivariate Case cont’d

Then the no-arbitrage condition (the multivariate equivalent
of (8)) is

µc − r = ΣcΘ (33)

=
∑n
i=1 σciθi

Equations (16) and (17) would still hold, and now the pricing
kernel’s process would be given by

dM/M = −r (t) dt −Θ (t)′ dZ (34)

= −r (t) dt −
∑n
i=1 θidzi
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Alternative Price Deflators

Consider an option written on the difference between two
securities’(stocks’) prices. The date t price of stock 1, S1 (t),
follows the process

dS1/S1 = µ1dt + σ1dz1 (35)

and the date t price of stock 2, S2 (t), follows the process

dS2/S2 = µ2dt + σ2dz2 (36)

where σ1 and σ2 are assumed to be constants and
dz1dz2 = ρdt.

Let C (t) be the date t price of a European option written on
the difference between these two stocks’prices.
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Alternative Price Deflators cont’d

At this option’s maturity date, T , its value equals

C (T ) = max [0,S1 (T )− S2 (T )] (37)

Now define c (t) = C (t) /S2 (t) , s (t) ≡ S1 (t) /S2 (t), and
B (t) = S2 (t) /S2 (t) = 1 as the deflated price processes,
where the prices of the option, stock 1, and stock 2 are all
normalized by the price of stock 2.
Under this normalized price system, the payoff (37) is

c (T ) = max [0, s (T )− 1] (38)

Applying Itô’s lemma, the process for s (t) is

ds/s = µsdt + σsdz3 (39)
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Alternative Price Deflators cont’d

Here µs ≡ µ1 − µ2 + σ22 − ρσ1σ2, σsdz3 ≡ σ1dz1 − σ2dz2,
and σ2s = σ21 + σ22 − 2ρσ1σ2.
Further, when prices are measured in terms of stock 2, the
deflated price of stock 2 becomes the riskless asset with
dB/B = 0dt (the deflated price never changes).

Using Itô’s lemma on c ,

dc =

[
cs µs s + ct +

1
2
css σ2s s

2
]
dt + cs σs s dz3 (40)

The familiar Black-Scholes hedge portfolio can be created
from the option and stock 1. The portfolio’s value is

H = −c + cs s (41)
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Alternative Price Deflators cont’d

The instantaneous change in value of the portfolio is

dH = − dc + csds (42)

= −
[
csµs s + ct +

1
2
css σ2s s

2
]
dt − cs σs s dz3

+ csµs s dt + csσs s dz3

= −
[
ct +

1
2
css σ2s s

2
]
dt

which is riskless and must earn the riskless return dB/B = 0:

dH = −
[
ct +

1
2
css σ2s s

2
]
dt = 0 (43)

which implies

ct +
1
2
css σ2s s

2 = 0 (44)
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Alternative Price Deflators cont’d

This is the Black-Scholes PDE with the risk-free rate, r , set to
zero. With boundary condition (38), the solution is

c(s, t) = s N(d1) − N(d2) (45)

where

d1 =
ln (s(t)) + 1

2σ
2
s (T − t)

σs
√
T − t

(46)

d2 = d1 − σ s
√
T − t

Multiply by S2 (t) to convert back to the undeflated price
system:

C ( t) = S1 N(d1) − S2 N(d2) (47)

C (t) does not depend on r(t), so that this formula holds even
for stochastic interest rates.
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Continuous Dividends

Let S (t) be the date t price per share of an asset that
continuously pays a dividend of δS (t) per unit time. Thus,

dS = (µ− δ) Sdt + σSdz (48)

where σ and δ are assumed to be constants.

Note that the asset’s total rate of return is dS/S+
δdt = µdt+ σdz , so that µ is its instantaneous expected rate
of return.

Consider a European call option written on this asset with
exercise price of X and maturity date of T > t, where we
define τ ≡ T − t.
Let r be the constant risk-free interest rate.
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Continuous Dividends cont’d

Based on (17), the date t price of this option is

c (t) = Êt
[
e−rτc (T )

]
(49)

= e−rτ Êt [max [S (T )− X , 0]]

In the absence of arbitrage, the Black-Scholes hedging
argument requires equation (8) which implies

µ = r + σθ (t) . (50)

In addition, define dẑ = dz + θ (t) dt as the Q-measure
Brownian motion.
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Continuous Dividends cont’d

Making these substitutions for µ and dz into equation (48)
leads to

dS = (r + σθ (t)− δ)Sdt + σS (dẑ − θ (t) d /t)

= (r − δ)Sdt + σSdẑ (51)

Since r − δ and σ are constants, S is a geometric Brownian
motion process and is lognormally distributed under Q.
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Continuous Dividends cont’d

Thus, the risk-neutral distribution of ln[S (T )] is normal:

ln [S (T )] ∼ N
(
ln [S (t)] + (r − δ − 1

2
σ2)τ , σ2τ

)
(52)

Equation (49) can now be computed as

c (t) = e−rτ Êt [max [S (T )− X , 0]] (53)

= e−r τ
∫ ∞
X

(S (T )− X ) g(S (T )) dS (T )

where g(ST ) is the lognormal probability density function.
Consider the change in variable

Y =
ln [S (T ) /S (t)]−

(
r − δ − 1

2σ
2
)
τ

σ
√
τ

(54)
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Continuous Dividends cont’d

Y ∼ N (0, 1) and allows (53) to be evaluated as

c = Se−δτN (d1)− Xe−r τN (d2) (55)

where

d1 =
ln (S/X ) +

(
r − δ + 1

2σ
2
)
τ

σ
√
τ

d2 = d1 − σ
√
τ (56)

If contingent claims have more complex payoffs or the
underlying asset has a more complex risk-neutral process, a
numeric solution to c (t) = Êt [e−rτc (S (T ))] can be
obtained, perhaps by Monte Carlo simulation.
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Continuous Dividends cont’d

Compared to an option written on an asset that pays no
dividends, the non-dividend-paying asset’s price, S (t), is
replaced with the dividend-discounted price of the
dividend-paying asset, S (t) e−δτ (to keep the total expected
rate of return at r).

Thus, the risk-neutral expectation of S (T ) is

Êt [S (T )] = S (t) e(r−δ)τ (57)

= S (t) e−δτerτ = S (t) erτ

where we define S (t) ≡ S (t) e−δτ .
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Foreign Currency Options

Define S (t) as the domestic currency value of a unit of
foreign currency (spot exchange rate).
Purchase of a foreign currency allows the owner to invest at
the risk-free foreign currency interest rate, rf .
Thus the dividend yield will equal this foreign currency rate,
δ = rf and Êt [S (T )] = S (t) e(r−rf )τ .
This expression is the no-arbitrage value of the date t forward
exchange rate having a time until maturity of τ , that is,
Ft ,τ = Se(r−rf )τ .
Therefore, a European option on foreign exchange is

c (t) = e−rτ [Ft ,τN (d1)− XN (d2)] (58)

where d1 =
ln[Ft,τ/X ]+σ2

2 τ

σ
√
τ

, and d2 = d1 − σ
√
τ .
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Options on Futures

Consider an option written on a futures price Ft ,t∗ , the date t
futures price for a contract maturing at date t∗.
The undiscounted profit (loss) earned by the long (short)
party over the period from date t to date T ≤ t∗ is simply
FT ,t∗ − Ft ,t∗ .
Like forward contracts, there is no initial cost for the parties
who enter into a futures contract. Hence, in a risk-neutral
world, their expected profits must be zero:

Êt [FT ,t∗ − Ft ,t∗ ] = 0 (59)

so under the Q measure, the futures price is a martingale:

Êt [FT ,t∗ ] = Ft ,t∗ (60)
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Options on Futures cont’d

Since an asset’s expected return under Q must be r , a futures
price is like the price of an asset with a dividend yield of δ = r .

The value of a futures call option that matures in τ periods
where τ ≤ (t∗ − t) is

c (t) = e−rτ [Ft ,t∗N (d1)− XN (d2)] (61)

where d1 =
ln[Ft,t∗/X ]+σ2

2 τ

σ
√
τ

, and d2 = d1 − σ
√
τ .

Note that this is similar in form to an option on a foreign
currency written in terms of the forward exchange rate.
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Term Structure Revisited

Let P (t, τ) be the date t price of a default-free bond paying
$1 at maturity T = t + τ .
Interpreting c (T ) = P (T , 0) = 1, equation (17) is

P (t, τ) = Êt
[
e−

∫ T
t r (u)du1

]
(62)

We now rederive the Vasicek (1977) model using this equation
where recall that the physical process for r (t) is

dr(t) = α [r − r (t)] dt + σrdzr (63)

Assuming, like before, that the market price of bond risk q is
a constant,

µp (r , τ) = r (t) + qσp (τ) (64)

where σp (τ) = −Prσr/P.
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Term Structure cont’d

Thus, recall that the physical process for a bond’s price is

dP (r , τ) /P (r , τ) = µp (r , τ) dt − σp (τ) dzr (65)

= [r (t) + qσp (τ)] dt − σp (τ) dzr

Defining dẑr = dzr − qdt, equation (65) becomes

dP (t, τ) /P (t, τ) = [r (t) + qσp (τ)] dt − σp (τ) [dẑr + qdt]

= r (t) dt − σp (τ) dẑr (66)

which is the risk-neutral process for the bond price since all
bonds have the expected rate of return r under the Q
measure.
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Term Structure cont’d

Therefore, the process for r(t) under the Q measure is found
by also substituting dẑr = dzr − qdt:

dr(t) = α [r − r (t)] dt + σr [dẑr + qdt]

= α
[(
r +

qσr
α

)
− r (t)

]
dt + σrdẑr (67)

which has the unconditional mean r + qσr/α.
Thus, when evaluating equation (62)

P (t, τ) = Êt

[
exp

(
−
∫ T

t
r (u) du

)]
this expectation is computed assuming r (t) follows the
process in (67).
Doing so leads to the same solution given in the previous
chapter, equation (9.41) in the text.
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Summary

Martingale pricing is a generalization of risk-neutral pricing
that is applicable in complete markets.

With dynamically complete markets, the continuous-time
state price deflator has an expected growth rate equal to
minus the risk-free rate and a standard deviation equal to the
market price of risk.

Contingent claims valuation often can be simplified by an
appropriate normalization of asset prices, deflating either by
the price of a riskless or risky asset.

Martingale pricing can be applied to options written on assets
paying continuous, proportional dividends, as well as
default-free bonds.
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