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10.1: Martingales

Introduction

@ A contingent claim’s price process can be transformed into a
martingale process by
© Adjusting its Brownian motion by the market price of risk.
@ Deflating by a riskless asset price.

@ The claim’s value equals the expectation of the transformed
process'’s future payoff.

@ We derive the continuous-time state price deflator that
transforms actual probabilities into risk-neutral probabilities.

@ Valuing a contingent claim might be simplified by deflating
the contingent claim’s price by that of another risky asset.

@ We consider applications: options on assets that pay a
continuous dividend: the term structure of interest rates.
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10.1: Martingales

Arbitrage and Martingales

@ Let S be the value of a risky asset that follows a general
scalar diffusion process

dS = uSdt 4 0S5dz (1)

where both = 11 (S,t) and 0 = ¢ (S, t) may be functions of
S and t and dz is a Brownian motion.
@ Itd’s lemma gives the process for a contingent claim’s price,
c(S, t):
dc = pi.cdt + occdz (2)
where p.c = ¢; + uScs + 0252cs5 and o.c = 05cg, and the
subscripts on ¢ denote part|a| derivatives.

o Consider a hedge portfolio of —1 units of the contingent claim
and cs units of the risky asset.
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10.1: Martingales

Arbitrage and Martingales cont'd

@ The value of this hedge portfolio, H, satisfies
H=—c+csS (3)
and the change in its value over the next instant is

dH = —dc+ csdS (4)
= —p.cdt —occdz 4+ cspuSdt + csoSdz
= [CSHS - /LCC] dt

@ In the absence of arbitrage, the riskless portfolio change must
be H(t)r(t)dt:

dH = [csuS — pocl dt = rHdt = r[—c + csS]ldt  (5)
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10.1: Martingales

Arbitrage and Martingales cont'd

@ This no-arbitrage condition for dH implies:
cspS — pe€ = r[=c+ csS] (6)

o Substituting p.c = ¢; + puScs + 3025%css into (6) leads to
the Black-Scholes equation:

1
50252@5 +rScs —rc+c¢ =0 (7)
e However, a different interpretation of (6) results from

substituting cs = 25 (from o.c = 05cs):

4 () (8)

o Oc

@ No-arbitrage condition (8) requires a unique market price of
risk, say 6 (t), so that u. =r+ o0 (t).
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10.1: Martingales

A Change in Probability

@ Substituting for u. in (2) gives
dc = pocdt + occdz = [rc + Qocc] dt + occdz (9)

@ Next, consider a new process Z; = z; + fot 0 (s) ds, so that
dz; = dz; + 0 (t) dt.
@ Then substituting dz; = dz; — 6 (t) dt in (9):

dc = [rc+0Oocc]dt+ occldz — Odt]
= rcdt +occdz (10)

@ If Z; were a Brownian motion, future values of ¢ generated by
dz occur under the Q or “risk-neutral” probability measure.

@ The actual or “physical” distribution, P, is generated by the
dz Brownian motion.
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10.1: Martingales

Girsanov's Theorem

@ Let dP7 be the instantaneous change in the cumulative
distribution at date T generated by dz; (the physical pdf).

@ dQt is the analogous risk-neutral pdf generated by dZ;.

@ Girsanov's theorem says that at date t < T, the two
probability densities satisfy

dQr = exp[ / 0 (u dz—/ 0 (u du]dPT

= (&r/€)dPr (11)

where &, is a positive random process depending on 6 (t) and
Zy:

£ —exp [—/()Te(u)dz—;/(;ﬁ(u)zdu] (12)
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10.1: Martingales

Girsanov's Theorem cont'd

@ Thus, multiplying the physical pdf, dPr, by {7 /&, leads to
the risk-neutral pdf, dQt, and since {7 /&, > 0, whenever
dPt has positive probability, so does d@Q+, making them
equivalent measures.

e Yet if (t) > 0, then a positive dz innovation lowers £_,
making the risk-neutral probability of a high z; state less than
its physical probability.

@ Rearranging (11) gives the Radon-Nikodym derivative:

dQr
P E1/8&: (13)

@ Later we will relate this derivative to the continuous-time
pricing kernel.
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10.1: Martingales

Money Market Deflator

o Let B(t) be the value of an instantaneous-maturity riskless
“money market fund” investment:

dB/B = r(t)dt (14)
e Note that B(T) = B(t) el rw)du for any date T > t.

e Now define C(t) = c¢(t)/B(t) as the deflated price process for
the contingent claim and use It6's lemma:

1 c
_ gy %z
= Bdt+ 5 dz rBdt
= o.Cdz

since dcdB = 0 and we substitute for dc from (10).
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10.1: Martingales

Money Market Deflator cont'd

@ An implication of (15) is
C(t)=E[C(T)] VT >t (16)

where E, [-] denotes the expectation operator under the
probability measure generated by dZ.

e Thus, C(t) is a martingale (random walk) process.

e Note that (16) holds for any deflated non-dividend-paying
contingent claim, including C = %.

@ Later, we will consider assets that pay dividends.
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10.1: Martingales

Feynman-Kac Solution

@ Rewrite (16) in terms of the undeflated contingent claims
price:

c(t) = B(t)E [C(T) BT)] (17)

e Equation (17) is the “Feynman-Kac" solution to the
Black-Scholes PDE and does not require knowledge of 6(t).
@ This is the continuous-time formulation of risk-neutral pricing:

risk-neutral (or Q@ measure) expected payoffs are discounted
by the risk-free rate.
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10.2: Kernels

Arbitrage and Pricing Kernels

@ Recall from the single- or multi-period consumption-portfolio
choice problem with time-separable utility:

c(t) = E[my7c(T)] (18)

- el

where date T > t, my 7 = M7 /M; and My = U (G, t).
@ Rewriting (18):

¢ (t) M, = E; [c (T) Mr] (19)

which says that the deflated price process, c (t) Mg, is a
martingale under P (not Q).
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10.2: Kernels

Arbitrage and Pricing Kernels cont'd

@ Assume that the state price deflator, M;, follows a strictly
positive diffusion process of the general form

dM; = p,,dt + opmdz (20)
@ Define ¢ = cM and apply 1t6’s lemma:
dc" = cdM + Mdc + (dc) (dM) (21)
= [cppy + Mp.c+ occom]dt + [com + Mocc] dz

o If ¢ = cM satisfies (19), that is, ¢™ is a martingale, then its
drift in (21) must be zero, implying

Em  OcOm

He ="~ "M

(22)
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10.2: Kernels

Arbitrage and Pricing Kernels cont'd

@ Consider the case in which c is the instantaneously riskless
investment B (t); that is, dc (t) = dB (t) = r (t) Bdt so that
oc=0and . = r(t).

e From (22), this requires

r(y)=-t2 (23)

@ Thus, the expected rate of change of the pricing kernel must
equal minus the instantaneous risk-free interest rate.

@ Next, consider the general case where the asset c is risky, so
that o # 0. Using (22) and (23) together, we obtain

OcOm

pe=r(t) - (24)

or
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10.2: Kernels

Arbitrage and Pricing Kernels cont'd

e T M (%)
e Comparing (25) to (8), we see that
Om
o () (26)

@ Thus, the no-arbitrage condition implies that the form of the
pricing kernel must be

dM/M = —r(t)dt —0(t) dz (27)
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10.2: Kernels

Arbitrage and Pricing Kernels cont'd

e Define m; = In M; so that dm = —[r + %Qz]dt — 0dz.
@ We can rewrite (18) as

c(t) = E[c(T)Mr/M]=E: [c(T)e™ ™| (28)
E; {C(T) e N [r)+30°(@)]du— [ e(u)dz}

@ Since the price under the money-market deflator (Q measure)
and the SDF (P measure) must be the same, equating (17)
and (28) implies

E, [ef N f<“>d“c(T)] = E[c(T)Mr/M]  (29)

=5 [e_ S rw)dug () = S 20 ()] O(uﬂ
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10.2: Kernels

Linking Valuation Methods

@ Substituting the definition of £, from (12) leads to

Ee [end rdue(T)| = B [em e (T) (g1 /¢,)]
E[C(T)] = E[C(T)(r/&)] (30)
[emder = [cmeric)dr
where C (t) = c(t) /B(t). Thus, relating (29) to (30):
My /M, = e~ I /08 (¢ /g, (31)

@ Hence, My /M, provides both discounting at the risk-free rate
and transforming the probability distribution to the
risk-neutral one via {7 /&;.
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10.2: Kernels

Multivariate Case

o Consider a multivariate extension where asset returns depend
on an n x 1 vector of independent Brownian motion processes,
dZ = (dz;...dz,)" where dz;dz; = 0 for i # j.

@ A contingent claim whose payoff depended on these asset
returns has the price process

dc/c = podt + Y odZ (32)

where Y. is a 1 X n vector L. = (0¢1...0¢p)-

@ Let the corresponding n x 1 vector of market prices of risks
associated with each of the Brownian motions be

O = (61...0,).
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10.2: Kernels

Multivariate Case cont'd

@ Then the no-arbitrage condition (the multivariate equivalent
of (8)) is
/‘I’C — r = ZC@ (33)
= >0t

e Equations (16) and (17) would still hold, and now the pricing
kernel's process would be given by
dM/M = —r(t)dt—0(t)dz (34)
—r (t) dt — 27:1 0;dz;
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10.3: Alternative

Alternative Price Deflators

@ Consider an option written on the difference between two
securities’ (stocks') prices. The date t price of stock 1, S; (t),
follows the process

dS1/S51 = pdt + 01dz (35)
and the date t price of stock 2, S, (t), follows the process
d52/52 = podt + o2dz (36)

where o1 and o, are assumed to be constants and
dzydzy = pdt.

@ Let C(t) be the date t price of a European option written on
the difference between these two stocks' prices.
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10.3: Alternative

Alternative Price Deflators cont'd

@ At this option's maturity date, T, its value equals
C(T) = max[0,51(T)— S (T)] (37)

e Now define c(t) = C(t) /S (t), s(t) = S1(t) /S2(t), and
B(t) = S»(t) /S2(t) = 1 as the deflated price processes,
where the prices of the option, stock 1, and stock 2 are all
normalized by the price of stock 2.

@ Under this normalized price system, the payoff (37) is
c(T)=max[0,s(T)—1] (38)
e Applying Itd's lemma, the process for s (t) is

ds/s = p.dt + osdz3 (39)
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10.3: Alternative

Alternative Price Deflators cont'd

@ Here o = pg — pp + a% — po103, 0sdzz = 01dz; — 02d2o,
and 02 =02 + 03 — 2po10s.

@ Further, when prices are measured in terms of stock 2, the
deflated price of stock 2 becomes the riskless asset with
dB/B = 0dt (the deflated price never changes).

@ Using Itd’s lemma on c,
dc = |c 1 22
= |CspsS + Cc + 2C55 05s°| dt + csossdzs (40)

@ The familiar Black-Scholes hedge portfolio can be created
from the option and stock 1. The portfolio’s value is

H = —c+ s (41)
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10.3: Alternative

Alternative Price Deflators cont'd

@ The instantaneous change in value of the portfolio is
dH = —dc + cids (42)

1
— |:Csﬂ55 + et 56 oﬁsz] dt — c; 05 dzs

+ G sdt + cs055dz3

1
— [ct + ECSS a?sﬂ dt

which is riskless and must earn the riskless return dB/B = 0:

1
dH = — [ct + 56 aisz} dt =0 (43)
which implies
G+ Tewols? = 0 44
t 2Css 0sS = ( )
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10.3: Alternative

Alternative Price Deflators cont'd

@ This is the Black-Scholes PDE with the risk-free rate, r, set to
zero. With boundary condition (38), the solution is

c(s, t) = sN(d1) — N(d») (45)
where
o n (s(t)) + lag (T —1)
d = Os —;— t (46)
db = d —osVT —t

e Multiply by Sy (t) to convert back to the undeflated price
system:
C( t) =5 N(dl) -5 N(dg) (47)
e ((t) does not depend on r(t), so that this formula holds even
for stochastic interest rates.
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10.4: Applications

Continuous Dividends

@ Let S(t) be the date t price per share of an asset that
continuously pays a dividend of §S (t) per unit time. Thus,

dS = (u — 0) Sdt + 05dz (48)

where o and § are assumed to be constants.

o Note that the asset’s total rate of return is dS/S+
ddt = pudt+ odz, so that p is its instantaneous expected rate
of return.

o Consider a European call option written on this asset with
exercise price of X and maturity date of T > t, where we
define 7= T — t.

@ Let r be the constant risk-free interest rate.
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10.4: Applications

Continuous Dividends cont'd

@ Based on (17), the date t price of this option is

c(t) = Ei[ec(T)] (49)
= e ""E [max[S(T) — X,0]]

@ In the absence of arbitrage, the Black-Scholes hedging
argument requires equation (8) which implies

p=r+ob(t). (50)

e In addition, define dZ = dz + 6 (t) dt as the Q-measure
Brownian motion.
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10.4: Applications

Continuous Dividends cont'd

e Making these substitutions for p and dz into equation (48)
leads to

dS = (r+o00(t)—0)Sdt+ oS (dz—6(t)dy)
(r —9) Sdt 4+ 0Sdz (51)

@ Since r — § and o are constants, S is a geometric Brownian
motion process and is lognormally distributed under Q.
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10.4: Applications

Continuous Dividends cont'd

o Thus, the risk-neutral distribution of In[S (T)] is normal:
n[S(T)] ~ N (m [S ()] + (=5 — 507, 027) (52)
e Equation (49) can now be computed as
c(t) = e "E[max[S(T)—X,0]] (53)
= e [ (ST - X)e(s (M) s (7)

where g(S7) is the lognormal probability density function.
o Consider the change in variable

v In[S(T)/S ()] - (r—6—%02) 7

(54)

oNT
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10.4: Applications

Continuous Dividends cont'd

@ Y ~ N(0,1) and allows (53) to be evaluated as
c=Se""N(di) — Xe "N (db) (55)

where

In(S/X)+ (r—6+3%0%) 7
o\T
b = & —oVT (56)

d =

o If contingent claims have more complex payoffs or the
underlying asset has a more complex risk-neutral process, a
numeric solution to ¢ (t) = E;[e™"c (S (T))] can be
obtained, perhaps by Monte Carlo simulation.
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10.4: Applications

Continuous Dividends cont'd

@ Compared to an option written on an asset that pays no
dividends, the non-dividend-paying asset’s price, S (t), is
replaced with the dividend-discounted price of the

dividend-paying asset, S (t) e™" (to keep the total expected
rate of return at r).

@ Thus, the risk-neutral expectation of S(T) is

ES(T)] = S(r)eor (57)
= S(t)e e =5(t)e"

where we define S (t) = S (t) e 7.
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10.4: Applications

Foreign Currency Options

@ Define S (t) as the domestic currency value of a unit of
foreign currency (spot exchange rate).

@ Purchase of a foreign currency allows the owner to invest at
the risk-free foreign currency interest rate, rr.

@ Thus the dividend yield will equal this foreign currency rate,
§=rrand E [S(T)] =S (t)elr—r7,

@ This expression is the no-arbitrage value of the date t forward
exchange rate having a time until maturity of 7, that is,
Frr = Selr=ro)r.

@ Therefore, a European option on foreign exchange is

c(t)=e"T[FN(di) — XN (do)] (58)

2
where di = % and dr = d; — 0\/T.
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10.4: Applications

Options on Futures

@ Consider an option written on a futures price F; =+, the date t
futures price for a contract maturing at date t*.

@ The undiscounted profit (loss) earned by the long (short)
party over the period from date t to date T < t* is simply
FT,t'* —_— Ft,t*'

@ Like forward contracts, there is no initial cost for the parties
who enter into a futures contract. Hence, in a risk-neutral
world, their expected profits must be zero:

Et [FT7t* - Ft,t*] = 0 (59)
so under the @ measure, the futures price is a martingale:

Et [FT,t*] = Ft,t* (60)
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10.4: Applications

Options on Futures cont’d

@ Since an asset’s expected return under @ must be r, a futures
price is like the price of an asset with a dividend yield of § = r.

@ The value of a futures call option that matures in 7 periods
where 7 < (t* —t) is
c(t)=e " [Fe =N (di) — XN (do)] (61)
In[Fe e /X]+ %7
where d; = —— and d, = di — o\/T.

@ Note that this is similar in form to an option on a foreign
currency written in terms of the forward exchange rate.
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10.4: Applications

Term Structure Revisited

e Let P(t,7) be the date t price of a default-free bond paying
$1 at maturity T =t + 7.
o Interpreting ¢ (T) = P(T,0) =1, equation (17) is

P (t, 7‘) e /E\t [e_ ftT I’(U)dul] (62)

@ We now rederive the Vasicek (1977) model using this equation
where recall that the physical process for r(t) is

dr(t) = a[r —r(t)] dt + o,dz, (63)

@ Assuming, like before, that the market price of bond risk g is
a constant,

pp (r;7) = r(t) + qop (7) (64)
where o, (1) = —P,0,/P.
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10.4: Applications

Term Structure cont'd

@ Thus, recall that the physical process for a bond’s price is
dP(r,7)/P(r,T) = p,(r,7)dt—op,(7)dz (65)
= [r(t) +qop (1)l dt — 0y (1) dz;
e Defining dz, = dz, — qdt, equation (65) becomes

dP(t,7)/P(t,7) = [r(t)+ qop(7)]dt —o,(7)[dZ, + qdt]
r(t)dt—o,(7)dz (66)
which is the risk-neutral process for the bond price since all

bonds have the expected rate of return r under the @
measure.
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10.4: Applications

Term Structure cont'd

@ Therefore, the process for r(t) under the Q measure is found
by also substituting dz, = dz, — qdt:

dr(t) = «f[f—r(t)]dt+o,[dz, + qdt]
- « [(H qg) - r(t)} dt +o,dz,  (67)

which has the unconditional mean 7 4 qo,/«.
@ Thus, when evaluating equation (62)

P(t,7) = E [exp (—/tTr(u) du)]

this expectation is computed assuming r (t) follows the
process in (67).

@ Doing so leads to the same solution given in the previous
chapter, equation (9.41) in the text.
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10.5: Summary

Summary

@ Martingale pricing is a generalization of risk-neutral pricing
that is applicable in complete markets.

@ With dynamically complete markets, the continuous-time
state price deflator has an expected growth rate equal to
minus the risk-free rate and a standard deviation equal to the
market price of risk.

@ Contingent claims valuation often can be simplified by an
appropriate normalization of asset prices, deflating either by
the price of a riskless or risky asset.

@ Martingale pricing can be applied to options written on assets
paying continuous, proportional dividends, as well as
default-free bonds.
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