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9.1: Black Scholes 9.2: Term Structure 9.3: Random Interest 9.4: Summary

Introduction

Asset prices are modeled as following diffusion processes,
permitting the possibility of continuous trading.

This environment can allow a market with an underlying
asset, a contingent claim, and the risk-free asset to be
dynamically complete.

We illustrate the Black-Scholes-Merton portfolio hedging
argument that results in a partial differential equation for a
contingent claim’s price.

Examples are

The Black-Scholes (1973) option pricing model.
The Vasicek (1977) equilibrium term structure model.
The Merton (1973b) stochastic interest rate option pricing
model.
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Portfolio Dynamics in Continuous Time

The insight of Black and Scholes (1973) and Merton (1973) is
that when assets follow diffusion processes, an option’s payoff
can be replicated by continuous trading in its underlying asset
and a risk-free asset.
Consider an investor who can trade in any n different assets
whose prices follow diffusion processes. Define Si (t) as the
price per share of asset i at date t, where i = 1, ..., n.
The instantaneous rate of return on the i th asset is

dSi (t) / Si (t) = µi dt + σi dzi (1)

with expected rate of return and variance µi and σ
2
i .

Let F (t) be the net cash outflow per unit time from the
portfolio at date t.
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Portfolio Dynamics in Continuous Time cont’d

First consider the analogous discrete-time dynamics where
each discrete period is of length h.
Let wi (t) be the number of shares held by the investor in
asset i from date t to t + h.
The date t portfolio value is denoted as H (t) and equals the
prior period’s holdings at date t prices:

H (t) =
n∑
i=1

wi (t − h)Si (t) (2)

The net cash outflow over the period is F (t) h which must
equal the net sales of assets:

−F (t) h =
n∑
i=1

[wi (t)− wi (t − h)] Si (t) (3)
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Portfolio Dynamics in Continuous Time cont’d

To derive the limits of equations (2) and (3) as of date t and
as h→ 0, convert backward differences, such as
wi (t)− wi (t − h), to forward differences. Update one period:

−F (t + h) h =
n∑
i=1

[wi (t + h)− wi (t)] Si (t + h)

=
n∑
i=1

[wi (t + h)− wi (t)] [Si (t + h)− Si (t)]

+
n∑
i=1

[wi (t + h)− wi (t)] Si (t) (4)

and
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Portfolio Dynamics in Continuous Time cont’d

H (t + h) =
n∑
i=1

wi (t) Si (t + h) (5)

Taking the limits of (4) and (5) as h→ 0:

−F (t) dt =
n∑
i=1

dwi (t) dSi (t) +
n∑
i=1

dwi (t) Si (t) (6)

and

H (t) =
n∑
i=1

wi (t)Si (t) (7)
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Portfolio Dynamics in Continuous Time cont’d

Applying Itô’s lemma to (7), the dynamics of the portfolio’s
value are

dH (t) =
n∑
i=1

wi (t) dSi (t) +
n∑
i=1

dwi (t)Si (t) +
n∑
i=1

dwi (t) dSi (t)

(8)

Substituting (6) into (8), we obtain

dH (t) =
n∑
i=1

wi (t) dSi (t) − F (t) dt (9)
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Portfolio Dynamics in Continuous Time cont’d

Thus, the value changes by capital gains income less net cash
outflows.

Substitute dSi (t) in (1) into (9),

dH (t) =
n∑
i=1

wi (t) dSi (t) − F (t) dt (10)

=
n∑
i=1

wi (t) [µi Sidt + σiSi dzi ] − F (t) dt

Define the proportion of H (t) invested in asset i as
ωi (t) = wi (t)Si (t)/H (t), then (10) becomes
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Portfolio Dynamics in Continuous Time cont’d

dH (t) =
n∑
i=1

ωi (t)H (t) [µidt + σi dzi ] − F (t) dt (11)

Collecting terms in dt,

dH (t) =

[
n∑
i=1

ωi (t)H (t)µi − F (t)
]
dt +

n∑
i=1

ωi (t)H (t)σi dzi

(12)

Note from (7) that
∑n
i=1 ωi (t) = 1. Adding a riskfree asset

that pays r(t), so that its portfolio proportion is
1−

∑n
i=1 ωi (t), we obtain
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Portfolio Dynamics in Continuous Time cont’d

dH (t) =

[
n∑
i=1

ωi (t) (µi − r)H (t) + rH (t)− F (t)
]
dt

+
n∑
i=1

ωi (t)H (t)σi dzi (13)

which is a continuous-time formulation of wealth dynamics.

Having derived the dynamics of an arbitrary portfolio, we now
consider the Black-Scholes dynamic hedge portfolio that
replicates contingent claims.

George Pennacchi University of Illinois

Dynamic Hedging and PDE Valuation 10/ 37



9.1: Black Scholes 9.2: Term Structure 9.3: Random Interest 9.4: Summary

Black-Scholes Model Assumptions

Let S(t) be the date t price per share of a stock that follows
the diffusion process

dS = µS dt + σS dz (14)

with time-varying µ but constant σ. Let r be the constant
rate of return on a risk-free investment B(t):

dB = rBdt (15)

Next, let there be a European call option written on the stock
whose date t value is c(S , t). Its maturity value at date T is

c(S(T ),T ) = max[ 0, S(T )− X ] (16)
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Black-Scholes Model

Assume that c (S , t) is twice-differentiable in S and once- in t.
Itô’s lemma states that the option’s value follows the process

dc =
[
∂c
∂S

µS +
∂c
∂t

+
1
2
∂2c
∂S2

σ2S2
]
dt +

∂c
∂S

σS dz (17)

Consider a self-financing (F (t) = 0 ∀t), zero net investment
portfolio that is short one unit of the call option and hedged
with the stock and risk-free asset.
Zero net investment implies that the amount invested in the
risk-free asset must be B (t) = c (t)− w (t)S (t) where w(t)
is the number of shares of stock.
Thus, the hedge portfolio H(t) has instantaneous return

dH (t) = −dc(t)+w (t) dS (t)+[c (t)− w (t) S (t)] rdt (18)
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Black-Scholes Model

Substituting (14) and (17) into (18), we obtain

dH (t) = −
[
∂c
∂S

µS +
∂c
∂t

+
1
2
∂2c
∂S2

σ2S2
]
dt − ∂c

∂S
σS dz

+w (t) (µS dt + σS dz) + [c (t)− w (t) S (t)] rdt(19)

Set w (t) = ∂c/∂S to hedge the return on the option. Then,

dH (t) = −
[
∂c
∂S

µS +
∂c
∂t

+
1
2
∂2c
∂S2

σ2S2
]
dt − ∂c

∂S
σS dz

+
∂c
∂S

(µS dt + σS dz) +
[
c (t)− ∂c

∂S
S (t)

]
rdt

=

[
−∂c
∂t
− 1
2
σ2S2

∂2c
∂S2

+ rc (t)− rS (t) ∂c
∂S

]
dt(20)
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Black-Scholes Model

The portfolio is hedged, so dH(t) is riskfree and must equal r .
It is also costless, so H(0) = 0 and

dH (0) = rH (0) dt = r × 0dt = 0 (21)

so H (t) = 0 ∀t and dH (t) = 0 ∀t. This implies

∂c
∂t

+
1
2
σ2S2

∂2c
∂S2

+ r S
∂c
∂S
− r c = 0 (22)

This partial differential equation has boundary condition

c(S(T ), T ) = max[ 0, S(T )− X ] (23)
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Black-Scholes Formula (1973)

The solution to (22) subject to (23) is

c(S(t), t) = S(t)N(d1) − X e−r (T−t)N(d2) (24)

where

d1 =
ln (S(t)/X ) +

(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

(25)

d2 = d1 − σ
√
T − t

and N(·) is the standard normal distribution function.
Similar to the binomial model, (24) does not depend on µ,
but only on S(t) and σ.
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Black-Scholes Formula (1973) cont’d

From put-call parity, the value of a European put is

p(S(t), t) = c(S(t), t) + X e−r (T−t) − S(t) (26)

= X e−r (T−t)N(−d2)− S(t)N(−d1)

Taking the partial derivatives of (24) and (26) gives the hedge
ratios

∂c
∂S

= N (d1) (27)

∂p
∂S

= −N (−d1) (28)

which implies 0 < ∂c/∂S < 1 and −1 < ∂p/∂S < 0.
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Vasicek (1977) Model

When the prices of default-free bonds depend on
continuous-time stochastic processes, continuous trading and
the no-arbitrage condition place restrictions on their prices.

We now consider the Vasicek (1977) “one-factor” term
structure model where uncertainty is determined by the yield
on the shortest-maturity bond, r(t).

Define P (t, τ) as the date t price of a bond that makes a
single payment of $1 at date T = t + τ . The rate of return on
the bond is dP(t ,τ)P(t ,τ) and P(t, 0) = $1.

The instantaneous-maturity yield, r (t), is defined as

lim
τ→0

dP (t, τ)
P (t, τ)

≡ r (t) dt (29)
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Process for r(t)

r (t) is assumed to follow the Ornstein-Uhlenbeck process:

dr(t) = α [r − r (t)] dt + σrdzr (30)

where α, r , and σr are positive constants. For
r (0) = r = 0.05, α = 0.3, and σr = 0.02, a typical path is
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Characteristics of O-U Process

The Ornstein-Uhlenbeck process is reasonable for interest
rates because it allows them to follow a mean-reverting
stationary process.

An end-of-chapter exercise shows that the
instantaneous-maturity rate, r (t), is normally distributed with

Et [r (t + τ)] = r + e−ατ (r (t)− r) (31)

and

Vart [r (t + τ)] =
σ2r
2α

(
1− e−2ατ

)
(32)

The parameter, α, measures how quickly r (t) is expected to
revert back to its unconditional value, r .

George Pennacchi University of Illinois

Dynamic Hedging and PDE Valuation 19/ 37



9.1: Black Scholes 9.2: Term Structure 9.3: Random Interest 9.4: Summary

Price Process

Assume that bond prices of all maturities depend on only a
single source of uncertainty r (t); P(r(t), τ (t)) where
τ ≡ T − t. Using Itô’s lemma,

dP (r , τ) =
∂P
∂r
dr +

∂P
∂t
dt + 1

2
∂2P
∂r2

(dr)2 (33)

=
[
Prα (r − r) + Pt + 1

2Prrσ
2
r

]
dt + Prσrdzr

= µp (r , τ)P (r , τ) dt − σp (τ)P (r , τ) dzr

where subscripts on P denote partial derivatives and

µp (r , τ) ≡
[
Prα(r−r )+Pt+ 12Prrσ

2
r

]
P(r ,τ) and σp (τ) ≡ − Prσr

P(r ,τ) .

Now make a portfolio containing one bond of maturity τ 1 and
−σp(τ 1)P(r ,τ 1)
σp(τ 2)P(r ,τ 2)

units of a bond with maturity τ 2.

George Pennacchi University of Illinois

Dynamic Hedging and PDE Valuation 20/ 37



9.1: Black Scholes 9.2: Term Structure 9.3: Random Interest 9.4: Summary

Hedge Portfolio

Since both bond values depend on dzr , the portfolio is hedged
if we continually readjust the amount of the τ 2-maturity bond
to equal −σp(τ 1)P(r ,τ 1)

σp(τ 2)P(r ,τ 2)
as r (t) changes.

The value of this hedge portfolio, H (t), is

H (t) = P (r , τ 1)−
σp (τ 1)P (r , τ 1)
σp (τ 2)P (r , τ 2)

P (r , τ 2) (34)

= P (r , τ 1)
[
1− σp (τ 1)

σp (τ 2)

]
and the hedge portfolio’s instantaneous return is

dH (t) = dP (r , τ 1)−
σp (τ 1)P (r , τ 1)
σp (τ 2)P (r , τ 2)

dP (r , τ 2) (35)

Substituting for dP(r , τ i ) i = 1, 2 from (33):

George Pennacchi University of Illinois

Dynamic Hedging and PDE Valuation 21/ 37



9.1: Black Scholes 9.2: Term Structure 9.3: Random Interest 9.4: Summary

Hedge Portfolio cont’d

dH (t) = µp (r , τ 1)P (r , τ 1) dt − σp (τ 1)P (r , τ 1) dzr

−σp (τ 1)
σp (τ 2)

P (r , τ 1)µp (r , τ 2) dt + σp (τ 1)P (r , τ 1) dzr

= µp (r , τ 1)P (r , τ 1) dt −
σp (τ 1)

σp (τ 2)
P (r , τ 1)µp (r , τ 2) dt

Since the portfolio return is riskless, its rate of return must
equal the instantaneous riskless interest rate, r (t):

dH (t) =

[
µp (r , τ 1)−

σp (τ 1)

σp (τ 2)
µp (r , τ 2)

]
P (r , τ 1) dt (36)

= r (t)H (t) dt = r (t)
[
1− σp (τ 1)

σp (τ 2)

]
P (r , τ 1) dt
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Bond Risk Premium

The second line is from our definition of H(t) in (34).
Equating the two, we get the equality of bond Sharpe ratios:

µp (r , τ 1)− r (t)
σp (τ 1)

=
µp (r , τ 2)− r (t)

σp (τ 2)
(37)

Condition (37) requires all bonds to have a uniform market
price of interest rate risk, as all risk is represented by dzr .
Cox, Ingersoll and Ross (1985a,b) derive this price of risk from
general equilibrium, but for now we simply assume it is a
constant q:

µp (r , τ)− r (t)
σp (τ)

= q (38)

or
µp (r , τ) = r (t) + qσp (τ) (39)
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Bond Risk Premium cont’d

Substituting µp (r , τ) and σp (τ) from (35) into (39):

Prα (r − r) + Pt + 1
2Prrσ

2
r = rP − qσrPr (40)

which can be rewritten as

σ2r
2 Prr + (αr + qσr − αr)Pr − rP + Pt = 0 (41)

Since dτ = −dt, so that Pt ≡ ∂P
∂t = −

∂P
∂τ ≡ −Pτ , equation

(41) can be rewritten as

σ2r
2
Prr + [α (r − r) + qσr ]Pr − rP − Pτ = 0 (42)

subject to the boundary condition that at τ = 0, P (r , 0) = 1.
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Bond Risk Premium cont’d

Equation (42) has a solution of the form

P (r (t) , τ) = A (τ) e−B(τ)r (t) (43)

Substituting back into (42) gives ordinary differential
equations for A and B with boundary conditions
A (τ = 0) = 1 and B (τ = 0) = 0 and solutions:

B (τ) ≡ 1− e−ατ
α

(44)

A (τ) ≡ exp

[
(B (τ)− τ)

(
r + q

σr
α
− 1

2

σ2r
α2

)
− σ2rB (τ)

2

4α

]
(45)
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Characteristics of Bond Prices

Using equation (43) in our definition of σp , we see that

σp (τ) ≡ −σr
Pr
P
= σrB (τ) =

σr
α

(
1− e−ατ

)
(46)

which is an increasing and concave function of τ .

Equation (39), µp (r , τ) = r (t) + qσp (τ), implies that a
bond’s expected rate of return increases (decreases) with its
time until maturity if the market price of risk, q, is positive
(negative).
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Characteristics of Bond Prices cont’d

A bond’s continuously compounded yield, Y (r (t) , τ), equals

Y (r (t) , τ) = −1
τ
ln [P (r (t) , τ)]

= −1
τ
ln [A (τ)] +

B (τ)
τ

r (t) (47)

= Y∞ + [r (t)− Y∞]
B (τ)
τ

+
σ2rB (τ)

2

4ατ

where Y∞ ≡ r + q σrα −
1
2
σ2r
α2
.

Note that lim
τ→∞

Y (r (t) , τ) = Y∞.

Hence, the yield curve, which is the graph of Y (r (t) , τ) as a
function of τ , equals r (t) at τ = 0 and asymptotes to Y∞ for
τ large.
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Bond Yield Slopes

When r (t) ≤ Y∞ − σ2r
4α2 = r + q

σr
α −

3σ2r
4α2 , the yield curve is

monotonically increasing.

When Y∞ − σ2r
4α2 < r (t) < Y∞ +

σ2r
2α2 = r + q

σr
α , the yield

curve has a humped shape.

A monotonically downward sloping, or “inverted,” yield curve
occurs when r + q σrα ≤ r (t).

Since the yield curve is normally upward sloping, this suggests
that r < r + q σrα −

3σ2r
4α2 , or q >

3σr
4α , i.e., a positive market

price of bond risk.
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Option Pricing with Random Interest Rates

We now value contingent claims (first example) assuming
stochastic interest rates (second example) to derive the
Merton (1973b) option pricing model (third example).
Define the price of a risk-free bond that pays $X at τ as
P (t, τ)X , so the option’s value is c (S (t) ,P (t, τ) , t).
From Vasicek (1977), this bond’s process is

dP (t, τ) = µp (t, τ)P (t, τ) dt + σp (τ)P (t, τ) dzp (48)

where from equation (33) define dzp ≡ −dzr and assume a
bond-stock correlation of dzpdz = ρdt. Applying Itô’s lemma:

dc =

[
∂c
∂S

µS +
∂c
∂P

µpP +
∂c
∂t

+
1
2
∂2c
∂S2

σ2S2 +
1
2
∂2c
∂P2

σ2pP
2

+
∂2c
∂S∂P

ρσσpSP
]
dt +

∂c
∂S

σS dz +
∂c
∂P

σpP dzp (49)
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Option Pricing with Random Interest Rates cont’d

= µccdt +
∂c
∂S

σS dz +
∂c
∂P

σpP dzp

where µcc is defined as the bracketed terms in (49).

Our hedge portfolio is a unit short position in the option, a
purchase of ws (t) units of the underlying stock, and a
purchase of wp (t) units of the τ -maturity bond.

A zero-net-investment restriction implies

c (t)− ws (t) S (t)− wp (t)P (t, τ) = 0 (50)

The hedge portfolio’s return can then be written as

dH (t) = −dc(t) + ws (t) dS (t) + wp (t) dP (t, τ) (51)
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Hedge Portfolio with Random Interest Rates

=
[
−µcc + ws (t)µS + wp (t)µpP

]
dt

+

[
− ∂c
∂S

σS + ws (t)σS
]
dz

+

[
− ∂c
∂P

σpP + wp (t)σpP
]
dzp

=
[
ws (t) (µ− µc )S + wp (t)

(
µp − µc

)
P
]
dt

+

[
ws (t)−

∂c
∂S

]
σSdz

+

[
wp (t)−

∂c
∂P

]
σpP dzp
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Hedge Portfolio with Random Interest Rates cont’d

If ws (t) and wp (t) are chosen to make the portfolio’s return
riskless, then from (51) they must equal:

ws (t) =
∂c
∂S

(52)

wp (t) =
∂c
∂P

(53)

But from the zero-net-investment condition (50), this can
only be possible if it happens to be the case that

c = ws (t)S + wp (t)P

= S
∂c
∂S

+ P
∂c
∂P

(54)
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Hedge Portfolio Dynamics

By Euler’s theorem, condition (54) holds if the option price is
a homogeneous of degree 1 function of S and P.

That is, c (kS (t) , kP (t, τ) , t) = kc (S (t) ,P (t, τ) , t). If so,
then no-arbitrage implies dH(t) = 0:

ws (t) (µ− µc )S + wp (t)
(
µp − µc

)
P = 0 (55)

or
∂c
∂S

(µ− µc ) S +
∂c
∂P

(
µp − µc

)
P = 0 (56)

which, using (54), can be rewritten as

∂c
∂S

µS +
∂c
∂P

µpP − µcc = 0 (57)
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Hedge Portfolio Dynamics cont’d

Substituting for µcc from (49), we obtain

− ∂c
∂t
− 1
2
∂2c
∂S2

σ2S2− 1
2
∂2c
∂P2

σ2pP
2− ∂2c

∂S∂P
ρσσpSP = 0 (58)

which, since τ ≡ T − t, can also be written as

1
2

[
∂2c
∂S2

σ2S2 +
∂2c
∂P2

σ2pP
2 + 2

∂2c
∂S∂P

ρσσpSP
]
− ∂c
∂τ

= 0

(59)

The boundary conditions are c (S (T ) ,P (T , 0) ,T ) =
c (S (T ) , 1,T ) = max [S (T )− X , 0] where
P (t = T , τ = 0) = 1.

The Merton (1973) solution is
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Merton PDE Solution

c (S (t) ,P (t, τ) , τ) = S(t)N(h1) − P (t, τ)XN(h2) (60)

where

h1 =
ln
(

S(t)
P(t ,τ)X

)
+ 1

2v
2

v
(61)

h2 = h1 − v

where

v2 =
∫ τ

0

(
σ2 + σp (y)

2 − 2ρσσp (y)
)
dy (62)

This is the Black-Scholes equation with v2 replacing σ2τ . v2

is the total variance of S(t)
P(t ,τ)X from date t to date T , an

interval of τ periods.
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Merton PDE Solution cont’d

If the bond’s volatility is assumed to be that of the Vasicek
model, σp (y) = σr

α (1− e
−αy ), then (62) is

v2 =
τ∫
0

(
σ2 +

σ2r
α2
(
1− 2e−αy + e−2αy

)
− 2ρσσr

α

(
1− e−αy

))
dy

= σ2τ +
σ2r
α3

(
ατ +

1− e−2ατ
2

− 2
(
1− e−ατ

))
−2ρσ σr

α2
[
ατ −

(
1− e−ατ

)]
(63)

Finally, note that the solution is homogeneous of degree 1 in
S (t) and P (t, τ), which verifies condition (54).
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Summary

When an underlying asset follows a diffusion and trade is can
occur continuously, a portfolio can be created that fully
hedges the risk of a contingent claim.

In the absence of arbitrage, this hedge portfolio’s return must
equal the riskless rate, which implies an equilibrium partial
differential equation for the contingent claim’s value.

This Black-Scholes-Merton hedging argument can derive
values of options and determine a term structure of
default-free interest rates.
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