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8.1: Brownian

Introduction

@ We cover the basic properties of continuous-time stochastic
processes having continuous paths, which are used to model
many financial and economic time series.

@ When asset prices follow such processes, dynamically complete
markets may be possible when continuous trading is
permitted.

@ We show how:

e A Brownian motion is a continuous-time limit of a discrete
random walk.

e Diffusion processes can be built from Brownian motions.

e Itd's Lemma derives the process for a function of a variable
that follows a continuous-time stochastic process.
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8.1: Brownian

Pure Brownian Motion

e Consider the stochastic process observed at date t, z(t).

@ Let At be a discrete change in time. The change in z(t) over
the time interval At is

2(t + At) — z(t) = Az = VAtE (1)

where € is a random variable with E[€] =0, Var[¢] =1, and
Cov[z(t + At) — z(t), z(s + At) — z(s) | = 0 if (¢, t + At)
and (s, s + At) are nonoverlapping time intervals.

@ z(t) is an example of a “random walk” process: E[Az] =0,
Var[Az] = At, and z(t) has serially uncorrelated increments.

@ Now consider the change in z(t) over a fixed interval, from 0
to T. Assume T is made up of n intervals of length At.
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8.1: Brownian

Pure Brownian Motion cont'd

@ Then .
2(T) - 2(0) = > Az (2)
i=1

where Az; = z(i- At) — z([i — 1] - At) = VALE;, and € is
the value of € over the i" interval. Hence (2) can be written

2(T) = 2(0) = Y VAtg = VALY g (3)
i=1 i=1
@ Now the first two moments of z(T) — z(0) are

Eo[2(T) — 2(0)] = VAL Y E[&]=0 (4)

i=1
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8.1: Brownian

Continuous-Time Limit

2 n
Varo[2(T) — 2(0)] = (\/At) S Vanle] =Aton-1=T
(5)
where E; [-] and Var; [-] are conditional on information at date t.
e Given T, the mean and variance of z(T) — z(0) are
independent of n, the number of intervals.

@ Keep T fixed but let n — oco. What do we know besides the
first two moments? From the Central Limit Theorem,

plim (2(T) — z(0)) = plim (z(T) — 2(0)) ~ N(0, T)

n—o00 At—0
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8.1: Brownian

Continuous-Time Limit cont'd

e Without loss of generality, assume € ~ N (0,1). The limit of
one of these minute independent increments can be defined as

dz(t) = lim Az = lim VAte (6)
At—0 At—0

@ Hence, E[dz(t)] =0 and Var[dz(t)] = dt, i.e., the size of
the time interval as At — 0: fOT dt=T.

@ dz is referred to as a pure Brownian motion or Wiener
process. It follows that

)
2(T) = 2(0) = /O dz(t) ~ N(O, T) (7)

@ The integral in (7) is a stochastic or Itd integral.
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8.1: Brownian

Continuous-Time Limit cont'd

@ z(t) is a continuous process that is nowhere differentiable;
dz(t)/dt does not exist.

@ Below is a z(t) with T =2 and n = 20, so that At =0.1.
As n — 00, so that At — 0, z(t) becomes Brownian motion.

[=K=)

Value of z[t)
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8.2: Diffusion

Diffusion Processes

@ Define a new process x(t) by
dx(t) = odz(t) (8)

@ Then over a discrete interval, [0, T], x(t) is distributed

T T T
x(T)—x(0) :/0 dx = /0 odz(t) = 0/0 dz(t) ~ N(0, 0°T)
(9)

@ Next, add a deterministic (nonstochastic) change of u(t) per
unit of time to the x(t) process:

dx = p(t)dt + odz (10)

@ Over any discrete interval, [0, T], we obtain
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8.2: Diffusion

Diffusion Processes cont'd

T T T
«(T) = x(0) = /O dx:/o () dt +/0 o dz(t) (11)
T T T )
_ /0 u(t)dt+0/0 dz(t) ~ N(/O L (t)dt, 2T)

o If u(t) = p, a constant, then
X(T) = x(0) = uT +o [} dz(t) ~ N(uT, 0°T).
@ The process dx = pudt + odz is arithmetic Brownian motion.

@ More generally, if  and o are functions of time, t, and/or
x(t), the stochastic differential equation describes x(t)

dx(t) = plx(t), t]dt + o[x(t), t] dz (12)
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8.2: Diffusion

Diffusion Processes cont'd

@ It is a continuous-time Markov process with drift pu[x(t), t]
and volatility o[x(t), t].

e Equation (12) can be rewritten as an integral equation:

T T T
x(T)—x(0) :/ dx = / p[x(t), t] dt +/ o[x(t), t] dz
0 0 0
(13)
e dx(t) is instantaneously normally distributed with mean

p[x(t), t] dt and variance o2[x(t), t] dt, but over any finite
interval, x(t) generally is not normally distributed.
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8.2: Diffusion

Definition of an It6 Integral

@ An It6 integral is formally defined as a mean-square limit of a
sum involving the discrete Az; processes. For example, the It

integral fOTU[X(t), t] dz, is defined from

2

° T
nl—i>mooEO |:<ZO’ [x([i = 1] - At),[i — 1] - At] Az — /0 olx(t), t] dz> :| =0

i=1
(14)

where within the parentheses of (14) is the difference between
the 1td integral and its discrete-time approximation.

@ An important Ito integral is fOT [dz (£)]°. In this case, (14)
gives its definition

n T 2
i Eo (Z[Azf— / [dz(r>12> —0 ()
i=1
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8.2: Diffusion

Definition of an It Integral cont'd

e To understand foT [dz (£)], recall from (5) that

n ] n 2
Van [2(T) = z(0)] = Van | Az| =E <Z Az,-)
i=1 J i=1
= K [i [Az)P| =T (16)
i=1 J

because Az; are serially uncorrelated.

@ One can show that

n 2
E (Z [Az]* — T) = 2TAt (17)

i=1
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8.2: Diffusion

Mean Square Convergence Proof

- ,
Eo (Z [Az]? — T) } =
i=1

= E Z [Az])? Z [A2j}2:| —2E |:Z [Az]?
_i:l Jj=1 i=1

T+ T2

= B | [Bz]*| + & Y [8z] [az)*| —2T% + T2
Li=1 i)

= 3n(At)? + (n? — n)(At)? — T2 =3n(At)? — n(At)? + T2 - T?
= 2(nAt)At =2TAt

@ The limit as At — 0, or n — oo, of (17) results in

2
lim E (Zi":l [Az,]2_T) = lim 2TAt=0  (18)

n—oo
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8.2: Diffusion

Convergence

e Comparing (15) with (18) implies that in mean-square
convergence:

)
/0 dz(t)2 = T (19)

-
- [
0

@ Since fOT [dz (t)]*converges to fOT dt for any T, over an
infinitesimally short time period [dz (t)]° converges to dt.
o If F is a function of the current value of a diffusion process,

x(t), and (possibly) also is a direct function of time, Itd's
lemma shows us how to characterize dF (x(t), t).
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8.3: Functions

Functions of Continuous-Time Processes and It6's Lemma

o It6's lemma is the fundamental theorem of stochastic calculus.

@ It derives the process of a function of a diffusion process.

@ [té's Lemma (univariate case): Let x(t) follow the stochastic
differential equation dx(t) = u(x, t) dt + o(x,t)dz. Also let
F(x(t), t) be at least a twice-differentiable function. Then
the differential of F(x, t) is

OF OF 10%F
dF = adx—i— Edt"i‘ EW

where the product (dx)? = o(x, t)?dt. Hence, substituting in
for dx and (dx)?, (20) can be rewritten:
oF OF 10°F ,

oF
dF = g#(xﬂf) Tor T2’ (x,1) dt"‘a"(xat)dz
(21)
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8.3: Functions

Informal Proof

Proof: (See book for references to a formal proof, this is the
intuition.)
Expand F (x(t + At), t + At) in a Taylor series around t and x(t):

2
F(x(t+ At),t+ At) = F(x(t), t)+8—FAx+Z—FAt+ [8F(A)
2 2

FA At+a—F(At)}+H (22)

+2 Ox0t ot?

where Ax = x(t + At) — x (t) and H represents terms with higher
orders of Ax and At. A discrete-time approximation of Ax can
be written as

Ax = p(x, t) At + o(x, t) VALE (23)
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8.3: Functions

Informal Proof cont'd

Defining AF = F (x(t + At), t + At) — F(x(t), t) and
substituting (23) in for Ax, equation (22) can be rewritten as

N (,u(x, t) At + o(x, 1) \/At%) + g’:At

Ox
10%F nt
+5 55 (Hx ) At + o(x,1) VAE) (34
82/: » 1 62F 2
+6X8t (,u(x, t) At + o(x,t) \/E.x) At + 5982 (At)"+H

Consider the limit as At — dt and AF — dF. Recall from (6)
that VAté becomes dz and from (19) that [\/AtE] [\/Até}

becomes [dz (t)]> — dt. All terms of the form dzdt — 0, and
dt" — 0 as At — dt whenever n > 1.
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8.3: Functions

Informal Proof cont'd

(dx)? = (u(x,t)dt + o(x,t)dz)? (25)
= pu(x,t)?(dt)? + 2u(x, t)o(x, t)dtdz + o(x, t)? (dz)?
= o(x,t)?(dz2)? = o(x, t)%dt

So as At — dt, VAt — dz,

AF = g—i (,u(x, t) At + o(x, ) \/At%) T %Ar

10%F N

+§W ( (x,t) At + o(x, t)\/Ate)

+ 0°F (p,(x t)At + o(x, t) VA e) At + - (At)2 +H
IxOot 2 8 2

becomes
oF OF  19°F , oF
dF = [87 nix, t) + B + 532 ° (X,t):| dt + aa(x,t) dz
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8.3: Functions

Geometric Brownian Motion

@ Geometric Brownian motion is given by
dx = puxdt+oxdz (26)

and is useful for modeling common stock prices since if x
starts positive, it always remains positive (mean and variance
are both proportional to its current value, x).

@ Now consider F (x,t) = In(x), (e.g., dF = d (Inx) is the rate
of return). Applying Itd's lemma, we have

B _ [0(Inx) J(In x) 182(|nx) 5
dF = d(Inx) = [ o HX + 5 + > 92 (ox)°| dt
n d(Inx) ox dz
Ox
= [,u +0 — 202} dt + odz (27)
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8.3: Functions

Geometric Brownian Motion cont'd

@ Thus, F = In x follows arithmetic Brownian motion. Since we
know that

F(T) — F(0) ~ N ((u— %02) T, o2 T> (28)

then x(t) = e"(!) has a lognormal distribution over any
discrete interval (by the definition of a lognormal random
variable).

@ Hence, geometric Brownian motion is lognormally distributed
over any time interval.
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8.3: Functions

Backward Kolmogorov Equation

@ In general, finding the discrete-time distribution of a variable
that follows a diffusion is useful for

— computing its expected value

— maximum likelihood estimation on discrete data

@ Let p(x, T;x¢, t) be the probability density function for
diffusion x at date T given that it equals x; at date t, where
T > t. Applying I1té's lemma (assuming differentiability in t
and twice- in x¢):

op 10°p ,

op

(xt, t)| dt + o o(xt, t)dz
t

ox.
(29)
@ The expected change (i.e. drift) of p should be zero.
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8.3: Functions

Backward Kolmogorov Equation cont'd

@ Therefore,

op 1, B
e, f] +§+ 57 (x tat)T—O (30)

e Condition (30) is the backward Kolmogorov equation.

e This partial differential equation for p (x, T; x¢, t) is solved
subject to the boundary condition that when t becomes equal
to T, then x must equal x; with probability 1.

@ Formally, this boundary condition is
p(x, T;x7, T) =06 (x —x7), where ¢ (+) is the Dirac delta
function: §(0) =00, 0(y) =0V y #0, and
S0 (y)dy =1.
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8.3: Functions

Backward Kolmogorov Equation cont'd

o Example: if u[x;, t] = uxt, 02 (x,, t) = 0°x? (geometric
Brownian motion), the Kolmogorov equation is

0p dp  Op

2.2

il L = 4 = = 1
27 Xigea T T =0 (31)
@ Substituting into (31), it can be verified that the solution is

2

_ 1 (Inxflnxtf(,uflcrz)(Tft))
Pl Toxet) = x\/2wo? (T — t) i 20'2(T_2t)
(32)

which is the lognormal probability density function for the
random variable x € (0, c0).
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8.3: Functions

Multivariate Diffusions and It6's Lemma

@ Suppose there are m diffusion processes
dx; = p;dt+ o dz i=1,...,m, (33)

and dz;dz; = p;;dt, where p;; is the correlation between
Wiener process dz; and dzzj.

@ Recall that dz;dz; = (dz;)” = dt. Now if dzj, is uncorrelated
with dz;, dz; can be written:

dzj = pjjdzi + /1 — p,?jdz;u (34)
@ Then from this interpretation of dz;, we have
dzjdz; = p?j (dz)* + (1- ,0,2]) (dziy)? + 2piiy /1= p,?jdz,-dz,-u
= phdt+ (1—p})dt+0 (35)
= dt
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8.3: Functions

Multivariate Ité6's Lemma

and

dzidz; = dz; (p,-jdz,- +4/1— p,%-dziu> (36)
= pj (dz,')2 + \/1—7;),21-dz,'d2,'u

@ Thus, p;; can be interpreted as the proportion of dz; that is
perfectly correlated with dz;.

o Let F(x1, ..., Xm, t) be at least a twice-differentiable
function. Then the differential of F(xi, ..., Xm, t) is
doF =3 8 g 4 —dt + > ZZ dxi dx; (37)
- Ox ! 17118X,<9XJ e

where dx,- de = 0;0jp; dt. Hence, (37) can be rewritten

George Pennacchi University of lllinois

Essentials of Diffusion Processes



8.3: Functions

Multivariate 1t6's Lemma cont'd

= [ OF 19°F 7
dF = i+ === 0; 7 dt
[12; (8X,’ Hi 2 3XI-2 U') + + Zzax,ax gioiPi

i=1 j>i

+ Z 0', dz; (38)

Xi

e Equation (38) generalizes It6's lemma for a univariate
diffusion, equation (21).

@ Notably, the process followed by a function of several diffusion
processes inherits each of the processes’ Brownian motions.
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8.4: Summary

Summary

@ Brownian motion is the foundation of diffusion processes and
is a continuous-time limit of a discrete-time random walk.

@ Ito's lemma tells us how to find the process followed by a
function of a diffusion process.

@ The lemma can be used to derive the Kolmogorov equation,
an important relation for finding the discrete-time distribution
of a random variable that follows a diffusion process.

@ The process followed by a function of several diffusions can be
derived from a multivariate version of Ité's lemma.
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