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Introduction

We cover the basic properties of continuous-time stochastic
processes having continuous paths, which are used to model
many financial and economic time series.

When asset prices follow such processes, dynamically complete
markets may be possible when continuous trading is
permitted.

We show how:

A Brownian motion is a continuous-time limit of a discrete
random walk.
Diffusion processes can be built from Brownian motions.
Itô’s Lemma derives the process for a function of a variable
that follows a continuous-time stochastic process.
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Pure Brownian Motion

Consider the stochastic process observed at date t, z(t).

Let ∆t be a discrete change in time. The change in z(t) over
the time interval ∆t is

z(t + ∆t)− z(t) ≡ ∆z =
√

∆t ε̃ (1)

where ε̃ is a random variable with E [ ε̃ ] = 0, Var [ ε̃ ] = 1, and
Cov [ z(t + ∆t)− z(t), z(s + ∆t)− z(s) ] = 0 if (t, t + ∆t)
and (s, s + ∆t) are nonoverlapping time intervals.

z(t) is an example of a “random walk”process: E [∆z ] = 0,
Var [∆z ] = ∆t, and z(t) has serially uncorrelated increments.

Now consider the change in z(t) over a fixed interval, from 0
to T . Assume T is made up of n intervals of length ∆t.
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Pure Brownian Motion cont’d

Then

z(T ) − z(0) =
n∑
i=1

∆zi (2)

where ∆zi ≡ z(i ·∆t)− z( [i − 1] ·∆t) ≡
√

∆t ε̃i , and ε̃i is
the value of ε̃ over the i th interval. Hence (2) can be written

z(T ) − z(0) =
n∑
i=1

√
∆t ε̃i =

√
∆t

n∑
i=1

ε̃i (3)

Now the first two moments of z(T )− z(0) are

E0[ z(T ) − z(0) ] =
√

∆t
n∑
i=1

E0[ ε̃i ] = 0 (4)
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Continuous-Time Limit

Var0[ z(T ) − z(0) ] =
(√

∆t
)2∑n

i=1
Var0 [̃εi ] = ∆ t · n · 1 = T

(5)
where Et [·] and Vart [·] are conditional on information at date t.

Given T , the mean and variance of z(T )− z(0) are
independent of n, the number of intervals.

Keep T fixed but let n→∞. What do we know besides the
first two moments? From the Central Limit Theorem,

p lim
n→∞

(z(T )− z(0)) = p lim
∆ t→0

(z(T )− z(0)) ∼ N(0, T )
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Continuous-Time Limit cont’d

Without loss of generality, assume ε̃i ∼ N (0, 1). The limit of
one of these minute independent increments can be defined as

dz(t) ≡ lim
∆ t→0

∆z = lim
∆t→0

√
∆ t ε̃ (6)

Hence, E [ dz(t) ] = 0 and Var [ dz(t) ] = dt, i.e., the size of
the time interval as ∆t → 0:

∫ T
0 dt = T .

dz is referred to as a pure Brownian motion or Wiener
process. It follows that

z(T )− z(0) =

∫ T

0
dz(t) ∼ N(0, T ) (7)

The integral in (7) is a stochastic or Itô integral.
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Continuous-Time Limit cont’d

z(t) is a continuous process that is nowhere differentiable;
dz(t)/dt does not exist.
Below is a z (t) with T = 2 and n = 20, so that ∆t = 0.1.
As n →∞, so that ∆t → 0, z(t) becomes Brownian motion.
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Diffusion Processes

Define a new process x(t) by

dx(t) = σ dz(t) (8)

Then over a discrete interval, [0, T ], x(t) is distributed

x(T )−x(0) =

∫ T

0
dx =

∫ T

0
σ dz(t) = σ

∫ T

0
dz(t) ∼ N(0, σ2T )

(9)

Next, add a deterministic (nonstochastic) change of µ(t) per
unit of time to the x(t) process:

dx = µ(t)dt + σdz (10)

Over any discrete interval, [0, T ], we obtain

George Pennacchi University of Illinois

Essentials of Diffusion Processes 8/ 27



8.1: Brownian 8.2: Diffusion 8.3: Functions 8.4: Summary

Diffusion Processes cont’d

x(T )− x(0) =

∫ T

0
dx =

∫ T

0
µ (t)dt +

∫ T

0
σ dz(t) (11)

=

∫ T

0
µ (t)dt + σ

∫ T

0
dz(t) ∼ N(

∫ T

0
µ (t)dt, σ2T )

If µ(t) = µ, a constant, then
x(T )− x(0) = µT + σ

∫ T
0 dz(t) ∼ N(µT , σ2T ).

The process dx = µdt + σdz is arithmetic Brownian motion.
More generally, if µ and σ are functions of time, t, and/or
x(t), the stochastic differential equation describes x(t)

dx(t) = µ[x(t), t] dt + σ[x(t), t] dz (12)
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Diffusion Processes cont’d

It is a continuous-time Markov process with drift µ[x(t), t]
and volatility σ[x(t), t].

Equation (12) can be rewritten as an integral equation:

x(T )−x(0) =

∫ T

0
dx =

∫ T

0
µ[x(t), t] dt +

∫ T

0
σ[x(t), t] dz

(13)

dx(t) is instantaneously normally distributed with mean
µ[x(t), t] dt and variance σ2[x(t), t] dt, but over any finite
interval, x(t) generally is not normally distributed.
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Definition of an Itô Integral

An Itô integral is formally defined as a mean-square limit of a
sum involving the discrete ∆zi processes. For example, the Itô
integral

∫ T
0 σ[x(t), t] dz , is defined from

lim
n→∞

E0

( n∑
i=1

σ [x ([i − 1] ·∆t) , [i − 1] ·∆t ] ∆zi −
∫ T

0
σ[x(t), t ] dz

)2 = 0

(14)

where within the parentheses of (14) is the difference between
the Itô integral and its discrete-time approximation.
An important Itô integral is

∫ T
0 [dz (t)]2. In this case, (14)

gives its definition

lim
n→∞

E0

( n∑
i=1

[∆zi ]
2 −

∫ T

0
[dz (t)]2

)2 = 0 (15)
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Definition of an Itô Integral cont’d

To understand
∫ T
0 [dz (t)]2, recall from (5) that

Var0 [z (T )− z (0)] = Var0

[
n∑
i=1

∆zi

]
= E0

( n∑
i=1

∆zi

)2
= E0

[
n∑
i=1

[∆zi ]
2

]
= T (16)

because ∆zi are serially uncorrelated.
One can show that

E0

( n∑
i=1

[∆zi ]
2 − T

)2 = 2T∆t (17)
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Mean Square Convergence Proof

E0

( n∑
i=1

[∆zi ]
2 − T

)2 =

= E0

 n∑
i=1

[∆zi ]
2

n∑
j=1

[
∆zj

]2− 2E0 [ n∑
i=1

[∆zi ]
2

]
T + T 2

= E0

[
n∑
i=1

[∆zi ]
4

]
+ E0

 n∑
i 6=j

[∆zi ]
2 [∆zj ]2

− 2T 2 + T 2

= 3n(∆t)2 + (n2 − n)(∆t)2 − T 2 = 3n(∆t)2 − n(∆t)2 + T 2 − T 2

= 2(n∆t)∆t = 2T∆t

The limit as ∆t → 0, or n→∞ , of (17) results in

lim
n→∞

E0

[(∑n

i=1
[∆zi ]

2 − T
)2]

= lim
∆t→0

2T∆t = 0 (18)
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Convergence

Comparing (15) with (18) implies that in mean-square
convergence: ∫ T

0
[dz (t)]2 = T (19)

=

∫ T

0
dt

Since
∫ T
0 [dz (t)]2converges to

∫ T
0 dt for any T , over an

infinitesimally short time period [dz (t)]2 converges to dt.

If F is a function of the current value of a diffusion process,
x(t), and (possibly) also is a direct function of time, Itô’s
lemma shows us how to characterize dF (x(t), t).
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Functions of Continuous-Time Processes and Itô’s Lemma

Itô’s lemma is the fundamental theorem of stochastic calculus.
It derives the process of a function of a diffusion process.
Itô’s Lemma (univariate case): Let x(t) follow the stochastic
differential equation dx(t) = µ(x , t) dt + σ(x , t) dz . Also let
F (x(t), t) be at least a twice-differentiable function. Then
the differential of F (x , t) is

dF =
∂F
∂x
dx +

∂F
∂t
dt +

1
2
∂2F
∂x2

(dx)2 (20)

where the product (dx)2 = σ(x , t)2dt. Hence, substituting in
for dx and (dx)2, (20) can be rewritten:

dF =

[
∂F
∂x

µ(x , t) +
∂F
∂t

+
1
2
∂2F
∂x2

σ2(x , t)
]
dt +

∂F
∂x

σ(x , t) dz

(21)
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Informal Proof

Proof : (See book for references to a formal proof, this is the
intuition.)
Expand F (x(t + ∆t), t + ∆t) in a Taylor series around t and x(t):

F (x(t + ∆t), t + ∆t) = F (x (t) , t) +
∂F

∂x
∆x +

∂F

∂t
∆t +

1

2

[
∂2F

∂x 2
(∆x)2

+ 2
∂2F

∂x∂t
∆x∆t +

∂2F

∂t2
(∆t)2

]
+ H (22)

where ∆x ≡ x(t + ∆t)− x (t) and H represents terms with higher
orders of ∆x and ∆t. A discrete-time approximation of ∆x can
be written as

∆x = µ(x , t) ∆t + σ(x , t)
√

∆t ε̃ (23)
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Informal Proof cont’d

Defining ∆F ≡ F (x(t + ∆t), t + ∆t)− F (x (t) , t) and
substituting (23) in for ∆x , equation (22) can be rewritten as

∆F =
∂F
∂x

(
µ(x , t) ∆t + σ(x , t)

√
∆t ε̃

)
+
∂F
∂t

∆t

+
1
2
∂2F
∂x2

(
µ(x , t) ∆t + σ(x , t)

√
∆t ε̃

)2
(24)

+
∂2F
∂x∂t

(
µ(x , t) ∆t + σ(x , t)

√
∆t ε̃

)
∆t +

1
2
∂2F
∂t2

(∆t)2 + H

Consider the limit as ∆t → dt and ∆F → dF . Recall from (6)

that
√

∆t ε̃ becomes dz and from (19) that
[√

∆t ε̃
] [√

∆t ε̃
]

becomes [dz (t)]2 → dt. All terms of the form dzdt → 0, and
dtn → 0 as ∆t → dt whenever n > 1.
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Informal Proof cont’d

(dx)2 = (µ(x , t) dt + σ(x , t) dz)2 (25)

= µ(x , t)2 (dt)2 + 2µ(x , t)σ(x , t)dtdz + σ(x , t)2 ( dz)2

= σ(x , t)2 ( dz)2 = σ(x , t)2dt

So as ∆t → dt,
√

∆t ε̃→ dz ,

∆F =
∂F

∂x

(
µ(x , t) ∆t + σ(x , t)

√
∆t ε̃

)
+
∂F

∂t
∆t

+
1

2

∂2F

∂x 2

(
µ(x , t) ∆t + σ(x , t)

√
∆t ε̃

)2
+
∂2F

∂x∂t

(
µ(x , t) ∆t + σ(x , t)

√
∆t ε̃

)
∆t +

1

2

∂2F

∂t2
(∆t)2 + H

becomes

dF =

[
∂F

∂x
µ(x , t) +

∂F

∂t
+
1

2

∂2F

∂x 2
σ2(x , t)

]
dt +

∂F

∂x
σ(x , t) dz
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Geometric Brownian Motion

Geometric Brownian motion is given by

dx = µx dt + σx dz (26)

and is useful for modeling common stock prices since if x
starts positive, it always remains positive (mean and variance
are both proportional to its current value, x).
Now consider F (x , t) = ln(x), (e.g., dF = d (ln x) is the rate
of return). Applying Itô’s lemma, we have

dF = d (ln x) =

[
∂(ln x)

∂x
µx +

∂(ln x)

∂t
+
1
2
∂2(ln x)

∂x2
(σx)2

]
dt

+
∂(ln x)

∂x
σx dz

=

[
µ + 0 − 1

2
σ2
]
dt + σ dz (27)
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Geometric Brownian Motion cont’d

Thus, F = ln x follows arithmetic Brownian motion. Since we
know that

F (T ) − F (0) ∼ N
(

(µ− 1
2
σ2)T , σ2T

)
(28)

then x(t) = eF (t) has a lognormal distribution over any
discrete interval (by the definition of a lognormal random
variable).

Hence, geometric Brownian motion is lognormally distributed
over any time interval.
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Backward Kolmogorov Equation

In general, finding the discrete-time distribution of a variable
that follows a diffusion is useful for

— computing its expected value

— maximum likelihood estimation on discrete data

Let p (x ,T ; xt , t) be the probability density function for
diffusion x at date T given that it equals xt at date t, where
T ≥ t. Applying Itô’s lemma (assuming differentiability in t
and twice- in xt):

dp =

[
∂p
∂xt

µ(xt , t) +
∂p
∂t

+
1
2
∂2p
∂x2t

σ2(xt , t)
]
dt +

∂p
∂xt

σ(xt , t) dz

(29)

The expected change (i.e. drift) of p should be zero.
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Backward Kolmogorov Equation cont’d

Therefore,

µ[xt , t]
∂p
∂xt

+
∂p
∂t

+
1
2
σ2 (xt , t)

∂2p
∂x2t

= 0 (30)

Condition (30) is the backward Kolmogorov equation.

This partial differential equation for p (x ,T ; xt , t) is solved
subject to the boundary condition that when t becomes equal
to T , then x must equal xt with probability 1.

Formally, this boundary condition is
p (x ,T ; xT ,T ) = δ (x − xT ), where δ (·) is the Dirac delta
function: δ (0) =∞, δ (y) = 0 ∀ y 6= 0, and∫∞
−∞ δ (y) dy = 1.
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Backward Kolmogorov Equation cont’d

Example: if µ[xt , t] = µxt , σ2 (xt , t) = σ2x2t (geometric
Brownian motion), the Kolmogorov equation is

1
2
σ2x2t

∂2p
∂x2t

+ µxt
∂p
∂xt

+
∂p
∂t

= 0 (31)

Substituting into (31), it can be verified that the solution is

p (x ,T , xt , t) =
1

x
√
2πσ2 (T − t)

exp

[
−
(
ln x − ln xt −

(
µ− 1

2σ
2
)

(T − t)
)2

2σ2 (T − t)

]
(32)

which is the lognormal probability density function for the
random variable x ∈ (0,∞).
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Multivariate Diffusions and Itô’s Lemma

Suppose there are m diffusion processes

dxi = µi dt + σi dzi i = 1, . . . , m, (33)

and dzidzj = ρijdt, where ρij is the correlation between
Wiener process dzi and dzj .
Recall that dzidzi = (dzi )

2 = dt. Now if dziu is uncorrelated
with dzi , dzj can be written:

dzj = ρijdzi +
√
1− ρ2ijdziu (34)

Then from this interpretation of dzj , we have

dzjdzj = ρ2ij (dzi )
2 +

(
1− ρ2ij

)
(dziu)2 + 2ρij

√
1− ρ2ijdzidziu

= ρ2ijdt +
(
1− ρ2ij

)
dt + 0 (35)

= dt
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Multivariate Itô’s Lemma

and

dzidzj = dzi
(
ρijdzi +

√
1− ρ2ijdziu

)
(36)

= ρij (dzi )
2 +

√
1− ρ2ijdzidziu

= ρijdt + 0

Thus, ρij can be interpreted as the proportion of dzj that is
perfectly correlated with dzi .
Let F (x1, . . . , xm , t) be at least a twice-differentiable
function. Then the differential of F (x1, . . . , xm , t) is

dF =
m∑
i=1

∂F
∂xi

dxi +
∂F
∂t
dt +

1
2

m∑
i=1

m∑
j=1

∂2F
∂xi ∂xj

dxi dxj (37)

where dxi dxj = σiσjρij dt. Hence, (37) can be rewritten
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Multivariate Itô’s Lemma cont’d

dF =

 m∑
i=1

(
∂F

∂xi
µi +

1

2

∂2F

∂x 2i
σ2i

)
+

∂F

∂t
+

m∑
i=1

m∑
j>i

∂2F

∂xi ∂xj
σiσjρij

 dt
+

m∑
i=1

∂F

∂xi
σi dzi (38)

Equation (38) generalizes Itô’s lemma for a univariate
diffusion, equation (21).

Notably, the process followed by a function of several diffusion
processes inherits each of the processes’Brownian motions.
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Summary

Brownian motion is the foundation of diffusion processes and
is a continuous-time limit of a discrete-time random walk.

Itô’s lemma tells us how to find the process followed by a
function of a diffusion process.

The lemma can be used to derive the Kolmogorov equation,
an important relation for finding the discrete-time distribution
of a random variable that follows a diffusion process.

The process followed by a function of several diffusions can be
derived from a multivariate version of Itô’s lemma.
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