Basics of Derivative Pricing

George Pennacchi

University of Illinois

Introduction

- Derivative securities have cashflows that derive from another "underlying" variable, such as an asset price, interest rate, or exchange rate.
- The absence of arbitrage opportunities places restrictions on the derivative's value relative to that of its underlying asset.
- For forward contracts, no-arbitrage considerations alone may lead to an exact pricing formula.
- For options, no-arbitrage restrictions cannot determine an exact price, but only bounds on the option's price.
- An exact option pricing formula requires additional assumptions on the probability distribution of the underlying asset's returns (e.g., binomial).

Forward Contracts on Assets Paying Dividends

- Let $F_{0 \tau}$ be the date 0 forward price for exchanging one share of an underlying asset τ periods in the future. This price is agreed to at date 0 but paid at date $\tau>0$ for delivery at date τ of the asset.
- Hence, the date $\tau>0$ payoff to the long (short) party in this forward contract is $S_{\tau}-F_{0 \tau}$, $\left(F_{0 \tau}-S_{\tau}\right)$ where S_{τ} is the date τ spot price of one share of the underlying asset.
- The parties set $F_{0 \tau}$ to make the date 0 contract's value equal 0 (no payment at date 0).
- Let $R_{f}>1$ be the per-period risk-free return for borrowing or lending over the period from date 0 to date τ, and let D be the date 0 present value of dividends paid by the underlying asset over the period from date 0 to date τ.

Forward Contract Cash Flows

- Consider a long forward contract and the trades that would exactly replicate its date τ payoffs:

Date 0 Trade
Long Forward Contract
Replicating Trades

1) Buy Asset and Sell Dividends
2) Borrow

Net Cashflow

Date 0 Cashflow

0

$$
-S_{0}+D
$$

$$
S_{\tau}
$$

$$
R_{f}^{-\tau} F_{0 \tau}
$$

$$
-F_{0 \tau}
$$

$$
-S_{0}+D+R_{f}^{-\tau} F_{0 \tau} \quad S_{\tau}-F_{0 \tau}
$$

- In the absence of arbitrage, the cost of the replicating trades equals the zero cost of the long position:

$$
\begin{equation*}
S_{0}-D-R_{f}^{-\tau} F_{0 \tau}=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{0 \tau}=\left(S_{0}-D\right) R_{f}^{\tau} \tag{2}
\end{equation*}
$$

Forward Contract Replication

- If the contract had been initiated at a previous date, say date -1 , at the forward price $F_{-1 \tau}=X$, then the date 0 value (replacement cost) of the long party's payoff, say f_{0}, would still be the cost of replicating the two cashflows:

$$
\begin{equation*}
f_{0}=S_{0}-D-R_{f}^{-\tau} X \tag{3}
\end{equation*}
$$

- The forward price in equation (2) did not require an assumption regarding the random distribution of the underlying asset price, S_{τ}, because it was a static replication strategy.
- Replicating option payoffs will entail, in general, a dynamic replication strategy requiring distributional assumptions.

Basic Characteristics of Option Prices

- The owner of a call option has the right to buy an asset in the future at a pre-agreed price, called the exercise or strike price.
- Since the option owner's payoff is always non-negative, this buyer must make an initial payment to the seller.
- A European option can be exercised only at the maturity of the option contract.
- Let S_{0} and S_{τ} be the current and maturity date prices per share of the underlying asset, X be the exercise price, and c_{t} and p_{t} be the date t prices of European call and put options, respectively.
- Then the maturity values of European call and put options are

$$
\begin{align*}
c_{\tau} & =\max \left[S_{\tau}-X, 0\right] \tag{4}\\
p_{\tau} & =\max \left[X-S_{\tau}, 0\right] \tag{5}
\end{align*}
$$

Lower Bounds on European Option Values

- Recall that the long (short) party's payoff of a forward contract is $S_{\tau}-F_{0 \tau}\left(F_{0 \tau}-S_{\tau}\right)$.
- If $F_{0 \tau}$ is like an option's strike, X, then assuming $X=F_{0 \tau}$ implies the payoff of a call (put) option weakly dominates that of a long (short) forward.
- Because equation (3) is the current value of a long forward position contract, the European call's value must satisfy

$$
\begin{equation*}
c_{0} \geq f_{0}=S_{0}-D-R_{f}^{-\tau} X \tag{6}
\end{equation*}
$$

- Furthermore, combining $c_{0} \geq 0$ with (6) implies

$$
\begin{equation*}
c_{0} \geq \max \left[S_{0}-D-R_{f}^{-\tau} X, 0\right] \tag{7}
\end{equation*}
$$

- By a similar argument,

$$
\begin{equation*}
p_{0} \geq \max \left[-f_{0}, 0\right]=\max \left[R_{f}^{-\tau} X+D-S_{0}, 0\right] \tag{8}
\end{equation*}
$$

Put-Call Parity

- Put-call parity links options written on the same underlying, with the same maturity date, and exercise price.

$$
\begin{equation*}
c_{0}+R_{f}^{-\tau} X+D=p_{0}+S_{0} \tag{9}
\end{equation*}
$$

- Consider forming the following two portfolios at date 0 :
(1) Portfolio $\mathrm{A}=$ a put option having value p_{0} and a share of the underlying asset having value S_{0}
(2) Portfolio $\mathrm{B}=$ a call option having value c_{0} and a bond with initial value of $R_{f}^{-\tau} X+D$
Then at date τ, these two portfolios are worth:
- Portfolio $\mathrm{A}=$

$$
\max \left[X-S_{\tau}, 0\right]+S_{\tau}+D R_{f}^{\tau}=\max \left[X, S_{\tau}\right]+D R_{f}^{\tau}
$$

- Portfolio $\mathrm{B}=\max \left[0, S_{\tau}-X\right]+$

$$
X+D R_{f}^{\tau}=\max \left[X, S_{\tau}\right]+D R_{f}^{\tau}
$$

American Options

- An American option is at least as valuable as its corresponding European option because of its early exercise right.
- Hence if C_{0} and P_{0}, the current values of American options, then $C_{0} \geq c_{0}$ and $P_{0} \geq p_{0}$.
- Some American options' early exercise feature has no value.
- Consider a European call option on a non-dividend-paying asset, and recall that $c_{0} \geq S_{0}-R_{f}^{-\tau} X$.
- An American call option on the same asset exercised early is worth $C_{0}=S_{0}-X<S_{0}-R_{f}^{-\tau} X<c_{0}$, a contradiction.
- For an American put option, selling the asset immediately and receiving $\$ X$ now may be better than receiving $\$ X$ at date τ (which has a present value of $R_{f}^{-\tau} X$). At exercise $P_{0}=X-S_{0}$ may exceed $R_{f}^{-\tau} X+D-S_{0}$ if remaining dividends are small.

Binomial Option Pricing

- The no-arbitrage assumption alone cannot determine an exact option price as a function of the underlying asset.
- However, particular distributional assumptions for the underlying asset can allow the option's payoff to be replicated by trading in the underlying asset and a risk-free asset.
- Cox, Ross, and Rubinstein (1979) developed a binomial model to value a European option on a non-dividend-paying stock.
- The model assumes that the current stock price, S, either moves up by a proportion u, or down by a proportion d, each period. The probability of an up move is π.

Binomial Option Pricing cont'd

$d S$ with probability $1-\pi$

- Let R_{f} be one plus the risk-free rate for the period, where in the absence of arbitrage $d<R_{f}<u$.
- Let c equal the current value of a European call option written on the stock and having a strike price of X, so that its payoff at maturity τ equals max $\left[0, S_{\tau}-X\right]$.
- Thus, one period prior to maturity:

Binomial Option Pricing cont'd

$$
c_{u} \equiv \max [0, u S-X] \text { with probability } \pi
$$

$$
\begin{equation*}
c_{d} \equiv \max [0, d S-X] \quad \text { with probability } 1-\pi \tag{11}
\end{equation*}
$$

- To value c, consider a portfolio containing Δ shares of stock and $\$ B$ of bonds so that its current value is $\Delta S+B$.
- This portfolio's value evolves over the period as

$$
\begin{equation*}
\Delta u S+R_{f} B \text { with probability } \pi \tag{12}
\end{equation*}
$$

$\Delta d S+R_{f} B \quad$ with probability $1-\pi$

Binomial Option Pricing cont'd

- With two securities (bond and stock) and two states (up or down), Δ and B can be chosen to replicate the option's payoffs:

$$
\begin{align*}
\Delta u S+R_{f} B & =c_{u} \tag{13}\\
\Delta d S+R_{f} B & =c_{d} \tag{14}
\end{align*}
$$

- Solving for Δ and B that satisfy these two equations:

$$
\begin{align*}
\Delta^{*} & =\frac{c_{u}-c_{d}}{(u-d) S} \tag{15}\\
B^{*} & =\frac{u c_{d}-d c_{u}}{(u-d) R_{f}} \tag{16}
\end{align*}
$$

- Hence, a portfolio of Δ^{*} shares of stock and $\$ B^{*}$ of bonds produces the same cashflow as the call option.

Binomial Option Pricing Example

- Therefore, the absence of arbitrage implies

$$
\begin{equation*}
c=\Delta^{*} S+B^{*} \tag{17}
\end{equation*}
$$

where Δ^{*} is the option's hedge ratio and B^{*} is the debt financing that are positive/negative (negative/positive) for calls (puts).

- Example: If $S=\$ 50, u=2, d=.5, R_{f}=1.25$, and $X=\$ 50$, then $u S=\$ 100, d S=\$ 25, c_{u}=\$ 50, c_{d}=\$ 0$.
- Therefore,

$$
\Delta^{*}=\frac{50-0}{(2-.5) 50}=\frac{2}{3}
$$

Binomial Option Pricing cont'd

$$
B^{*}=\frac{0-25}{(2-.5) 1.25}=-\frac{40}{3}
$$

so that

$$
c=\Delta^{*} S+B^{*}=\frac{2}{3}(50)-\frac{40}{3}=\frac{60}{3}=\$ 20
$$

- This option pricing formula can be rewritten:

$$
\begin{align*}
c & =\Delta^{*} S+B^{*}=\frac{c_{u}-c_{d}}{(u-d)}+\frac{u c_{d}-d c_{u}}{(u-d) R_{f}} \tag{18}\\
& =\frac{\left[\frac{R_{f}-d}{u-d} \max [0, u S-X]+\frac{u-R_{f}}{u-d} \max [0, d S-X]\right]}{R_{f}}
\end{align*}
$$

which does not depend on the stock's up/down probability, π.

Binomial Option Pricing cont'd

- Since the stock's expected rate of return equals $u \pi+d(1-\pi)-1$, it need not be known or estimated to solve for the no-arbitrage value of the option, c.
- However, we do need to know u and d, the size of the stock's movements per period which determine its volatility.
- Note also that we can rewrite c as

$$
\begin{equation*}
c=\frac{1}{R_{f}}\left[\widehat{\pi} c_{u}+(1-\widehat{\pi}) c_{d}\right] \tag{19}
\end{equation*}
$$

where $\widehat{\pi} \equiv \frac{R_{f}-d}{u-d}$ is the risk-neutral probability of the up state.

- $\widehat{\pi}=\pi$ if individuals are risk-neutral since

$$
\begin{equation*}
[u \pi+d(1-\pi)] S=R_{f} S \tag{20}
\end{equation*}
$$

which implies that

Binomial Option Pricing cont'd

$$
\begin{equation*}
\pi=\frac{R_{f}-d}{u-d}=\widehat{\pi} \tag{21}
\end{equation*}
$$

so that $\widehat{\pi}$ does equal π under risk neutrality.

- Thus, (19) can be expressed as

$$
\begin{equation*}
c_{t}=\frac{1}{R_{f}} \widehat{E}\left[c_{t+1}\right] \tag{22}
\end{equation*}
$$

where $\widehat{E}[\cdot]$ denotes the expectation operator evaluated using the risk-neutral probabilities $\widehat{\pi}$ rather than the true, or physical, probabilities π.

Multiperiod Binomial Option Pricing

- Next, consider the option's value with two periods prior to maturity. The stock price process is

$$
u^{2} S
$$

so that the option price process is

Multiperiod Binomial Option Pricing cont'd

- We know how to solve one-period problems:

$$
\begin{align*}
& c_{u}=\frac{\widehat{\pi} c_{u u}+(1-\widehat{\pi}) c_{d u}}{R_{f}} \tag{25}\\
& c_{d}=\frac{\widehat{\pi} c_{d u}+(1-\widehat{\pi}) c_{d d}}{R_{f}} \tag{26}
\end{align*}
$$

Multiperiod Binomial Option Pricing cont'd

- With two periods to maturity, the next period cashflows of c_{u} and c_{d} are replicated by a portfolio of $\Delta^{*}=\frac{c_{u}-c_{d}}{(u-d) S}$ shares of stock and $B^{*}=\frac{u c_{d}-d c_{u}}{(u-d) R_{f}}$ of bonds. No arbitrage implies

$$
\begin{equation*}
c=\Delta^{*} S+B^{*}=\frac{1}{R_{f}}\left[\widehat{\pi} c_{u}+(1-\widehat{\pi}) c_{d}\right] \tag{27}
\end{equation*}
$$

which, as before says that $c_{t}=\frac{1}{R_{f}} \widehat{E}\left[c_{t+1}\right]$.

- The market is complete over both the last period and second-to-last periods. Substituting in for c_{u} and c_{d}, we have

$$
c=\frac{1}{R_{f}^{2}}\left[\widehat{\pi}^{2} c_{u u}+2 \widehat{\pi}(1-\widehat{\pi}) c_{u d}+(1-\widehat{\pi})^{2} c_{d d}\right]
$$

Multiperiod Binomial Option Pricing cont'd

$$
\begin{aligned}
= & \frac{1}{R_{f}^{2}}\left[\hat{\pi}^{2} \max \left[0, u^{2} S-X\right]+2 \widehat{\pi}(1-\widehat{\pi}) \max [0, d u S-X]\right] \\
& +\frac{1}{R_{f}^{2}}\left[(1-\widehat{\pi})^{2} \max \left[0, d^{2} S-X\right]\right]
\end{aligned}
$$

which says $c_{t}=\frac{1}{R_{f}^{2}} \widehat{E}\left[c_{t+2}\right]$. Note when a market is complete each period, it becomes dynamically complete. By appropriate trading in just two assets, payoffs in three states of nature can be replicated.

- Repeating this analysis for any period prior to maturity, we always obtain

$$
\begin{equation*}
c=\Delta^{*} S+B^{*}=\frac{1}{R_{f}}\left[\widehat{\pi} c_{u}+(1-\widehat{\pi}) c_{d}\right] \tag{28}
\end{equation*}
$$

Multiperiod Binomial Option Pricing cont'd

- Repeated substitution for $c_{u}, c_{d}, c_{u u}, c_{u d}, c_{d d}, c_{u u u}$, and so on, we obtain the formula, with n periods prior to maturity:

$$
\begin{equation*}
c=\frac{1}{R_{f}^{n}}\left[\sum_{j=0}^{n}\left(\frac{n!}{j!(n-j)!}\right) \widehat{\pi}^{j}(1-\widehat{\pi})^{n-j} \max \left[0, u^{j} d^{n-j} S-X\right]\right] \tag{29}
\end{equation*}
$$

or $c_{t}=\frac{1}{R_{f}^{n}} \widehat{E}\left[c_{t+n}\right]$. Define " a " as the minimum number of upward jumps of S for it to exceed X.

- Then for all $j<a$ (out of the money):

$$
\begin{equation*}
\max \left[0, u^{j} d^{n-j} S-X\right]=0 \tag{30}
\end{equation*}
$$

while for all $j \geq a$ (in the money):

$$
\begin{equation*}
\max \left[0, u^{j} d^{n-j} S-X\right]=u^{j} d^{n-j} S-X \tag{31}
\end{equation*}
$$

Multiperiod Binomial Option Pricing cont'd

- Thus, the formula for c can be simplified:

$$
\begin{equation*}
c=\frac{1}{R_{f}^{n}}\left[\sum_{j=a}^{n}\left(\frac{n!}{j!(n-j)!}\right) \widehat{\pi}^{j}(1-\widehat{\pi})^{n-j}\left[u^{j} d^{n-j} S-X\right]\right] \tag{32}
\end{equation*}
$$

- Breaking up (32) into two terms, we have

$$
\begin{align*}
c= & S\left[\sum_{j=a}^{n}\left(\frac{n!}{j!(n-j)!}\right) \widehat{\pi}^{j}(1-\widehat{\pi})^{n-j}\left[\frac{\mu^{j} d^{n-j}}{R_{f}^{n}}\right]\right] \\
& -X R_{f}^{-n}\left[\sum_{j=a}^{n}\left(\frac{n!}{j!(n-j)!}\right) \widehat{\pi}^{j}(1-\widehat{\pi})^{n-j}\right] \tag{33}
\end{align*}
$$

The terms in brackets are complementary binomial distribution functions, so that (33) can be written

Multiperiod Binomial Option Pricing cont'd

$$
\begin{equation*}
c=S \phi\left[a ; n, \widehat{\pi}^{\prime}\right]-X R_{f}^{-n} \phi[a ; n, \widehat{\pi}] \tag{34}
\end{equation*}
$$

where $\widehat{\pi}^{\prime} \equiv\left(\frac{u}{R_{f}}\right) \widehat{\pi}$ and $\phi[a ; n, \widehat{\pi}]$ is the probability that the sum of n random variables that equal 1 with probability $\widehat{\pi}$ and 0 with probability $1-\widehat{\pi}$ is $\geq a$.

- Formula (34) can converge to the Black-Scholes option pricing formula as the period length goes to zero.
- Suppose each period is of length Δt and keep $T=n \Delta t$ fixed but let $\Delta t \rightarrow 0$ as $n \rightarrow \infty$.

Multiperiod Binomial Option Pricing cont'd

- Next let $u=e^{\sigma \sqrt{\Delta t}}$ and $d=1 / u=e^{-\sigma \sqrt{\Delta t}}$, which gives a stock return variance of σ^{2} per unit time.
- Then as the number of periods $n \rightarrow \infty$, but the length of each period $\Delta t=\frac{T}{n} \rightarrow 0$, the Central Limit Theorem implies that formula (34) converges to:

$$
\begin{equation*}
c=S N(z)-X R_{f}^{-T} N(z-\sigma \sqrt{T}) \tag{35}
\end{equation*}
$$

where $z \equiv\left[\ln \left(\frac{S}{X R_{f}^{-T}}\right)+\frac{1}{2} \sigma^{2} T\right] /(\sigma \sqrt{T})$ and $N(\cdot)$ is the cumulative standard normal distribution function.

Summary

- Forward contract payoffs can be replicated using a static trading strategy.
- Option contract payoffs require a dynamic trading strategy.
- A dynamically complete market allows us to use risk-neutral valuation.
- Dynamically complete markets imply replication of payoffs in all future states, but we may need to execute many trades to do so.

