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7.1: Contracts

Introduction

@ Derivative securities have cashflows that derive from another
“underlying” variable, such as an asset price, interest rate, or
exchange rate.

@ The absence of arbitrage opportunities places restrictions on
the derivative's value relative to that of its underlying asset.

@ For forward contracts, no-arbitrage considerations alone may
lead to an exact pricing formula.

@ For options, no-arbitrage restrictions cannot determine an
exact price, but only bounds on the option’s price.

@ An exact option pricing formula requires additional
assumptions on the probability distribution of the underlying
asset’s returns (e.g., binomial).
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7.1: Contracts

Forward Contracts on Assets Paying Dividends

@ Let Fy, be the date 0 forward price for exchanging one share
of an underlying asset 7 periods in the future. This price is
agreed to at date 0 but paid at date 7 > 0 for delivery at
date 7 of the asset.

@ Hence, the date 7 > 0 payoff to the long (short) party in this
forward contract is S; — For, ( For—S;) where S; is the date
T spot price of one share of the underlying asset.

@ The parties set Fy,; to make the date 0 contract’s value equal
0 (no payment at date 0).

@ Let R > 1 be the per-period risk-free return for borrowing or
lending over the period from date 0 to date 7, and let D be
the date O present value of dividends paid by the underlying
asset over the period from date 0 to date 7.
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7.1: Contracts

Forward Contract Cash Flows

o Consider a long forward contract and the trades that would

exactly replicate its date 7 payoffs:
Date 0 Trade Date 0 Cashflow Date 7 Cashflow

Long Forward Contract 0 S+ — For

Replicating Trades

1) Buy Asset and Sell Dividends ~ —Sg + D Sy
2) Borrow R T For —For
Net Cashflow —So+D+R;"For  Sr—For

@ In the absence of arbitrage, the cost of the replicating trades
equals the zero cost of the long position:

So—D—Rf_TFoT:O (].)

or

FOT:(SO_D)RfT (2)
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7.1: Contracts

Forward Contract Replication

@ If the contract had been initiated at a previous date, say date
—1, at the forward price F_1, = X, then the date 0 value
(replacement cost) of the long party’s payoff, say fy, would
still be the cost of replicating the two cashflows:

fy=S—D—R "X (3)

@ The forward price in equation (2) did not require an
assumption regarding the random distribution of the
underlying asset price, S, because it was a static replication
strategy.

@ Replicating option payoffs will entail, in general, a dynamic
replication strategy requiring distributional assumptions.
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7.1: Contracts

Basic Characteristics of Option Prices

@ The owner of a call option has the right to buy an asset in the
future at a pre-agreed price, called the exercise or strike price.

@ Since the option owner’s payoff is always non-negative, this
buyer must make an initial payment to the seller.

@ A European option can be exercised only at the maturity of
the option contract.

@ Let Sp and S; be the current and maturity date prices per
share of the underlying asset, X be the exercise price, and ¢;
and p; be the date t prices of European call and put options,
respectively.

@ Then the maturity values of European call and put options are

¢ = max[S; — X, 0] (4)
pr = max[X —5;, 0] (5)
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7.1: Contracts

Lower Bounds on European Option Values

Recall that the long (short) party’s payoff of a forward
contract is S; — For (For—S7).

If Fo, is like an option’s strike, X, then assuming X = Fqy,
implies the payoff of a call (put) option weakly dominates
that of a long (short) forward.

Because equation (3) is the current value of a long forward
position contract, the European call’s value must satisfy

C()Zﬂ)ZS()—D—R;TX (6)
Furthermore, combining ¢y > 0 with (6) implies
c > max [So — D — R77X, 0] (7)

By a similar argument,

po > max[—fy, 0] = max [R; "X + D — S, 0] (8)
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7.1: Contracts

Put-Call Parity

o Put-call parity links options written on the same underlying,
with the same maturity date, and exercise price.

o+ RTX+D = py+ S (9)

e Consider forming the following two portfolios at date 0:

@ Portfolio A = a put option having value py and a share of the
underlying asset having value S,

@ Portfolio B = a call option having value ¢y and a bond with
initial value of R, "X + D

Then at date 7, these two portfolios are worth:
@ Portfolio A =
max [X — 5;,0] + S; + DR} = max[X, S;| + DR?
e Portfolio B = max[0, S; — X]+
X + DR} = max[X, S;]+ DR}
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7.1: Contracts

American Options

@ An American option is at least as valuable as its corresponding
European option because of its early exercise right.

@ Hence if Cy and Py, the current values of American options,
then Cy > ¢g and Py > pp.

@ Some American options’ early exercise feature has no value.

o Consider a European call option on a non-dividend-paying
asset, and recall that ¢ > So — R, " X.

@ An American call option on the same asset exercised early is
worth Co = Sgp — X < So — R; "X < ¢, a contradiction.

@ For an American put option, selling the asset immediately and
receiving $X now may be better than receiving $X at date 7
(which has a present value of R "X). At exercise
Py = X — So may exceed R, "X + D — Sy if remaining
dividends are small.
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7.2: Binomial

Binomial Option Pricing

@ The no-arbitrage assumption alone cannot determine an exact
option price as a function of the underlying asset.

@ However, particular distributional assumptions for the
underlying asset can allow the option's payoff to be replicated
by trading in the underlying asset and a risk-free asset.

@ Cox, Ross, and Rubinstein (1979) developed a binomial model
to value a European option on a non-dividend-paying stock.

@ The model assumes that the current stock price, S, either
moves up by a proportion u, or down by a proportion d, each
period. The probability of an up move is .
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7.2: Binomial

Binomial Option Pricing cont'd

uS with probability =

/
S 10
( (10)
dS with probability 1 — 7

@ Let Ry be one plus the risk-free rate for the period, where in
the absence of arbitrage d < Rf < u.

@ Let c equal the current value of a European call option
written on the stock and having a strike price of X, so that its
payoff at maturity 7 equals max[0, S; — X].

@ Thus, one period prior to maturity:
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7.2: Binomial

Binomial Option Pricing cont'd

¢y = max [0, uS — X] with probability 7

/
N
cg = max[0,dS — X]  with probability 1 — 7

(11)
@ To value ¢, consider a portfolio containing A shares of stock
and $B of bonds so that its current value is AS + B.

@ This portfolio’s value evolves over the period as
AuS + R¢B with probability 7
/
AS+B 12
( (12)
AdS + R¢B  with probability 1 — «
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7.2: Binomial

Binomial Option Pricing cont'd

e With two securities (bond and stock) and two states (up or
down), A and B can be chosen to replicate the option’s

payoffs:
AuS+ ReB = ¢y (13)
AdS + RfB = C4 (14)
@ Solving for A and B that satisfy these two equations:
* CU - Cd
A= ——— 15
(u—d)S (15)
. ucy — dcy
Bf = — 16
(U — d) Rf‘ ( )

@ Hence, a portfolio of A* shares of stock and $B* of bonds
produces the same cashflow as the call option.
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7.2: Binomial

Binomial Option Pricing Example

@ Therefore, the absence of arbitrage implies
c=A*S+B* (17)

where A* is the option’s hedge ratio and B* is the debt
financing that are positive/negative (negative/positive) for
calls (puts).

o Example: 1f S =$50, u=2,d=.5 Rr = 1.25, and X = $50,
then uS = $100, dS = $25, ¢, — $50, ¢y — $0.

@ Therefore, 500 )
A =" - _Z
(2—.5)50 3
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7.2: Binomial

Binomial Option Pricing cont'd

. 0-25 40
B —— — — _
(2—5)1.25 3
so that
2 40 60
=A* B* == - =—=%2
c S+ 3(50) 3 3 $20

@ This option pricing formula can be rewritten:

Cy — C4 ucy — dc,
c S+ (u—d)+(u—d)Rf (18)

[% max [0, uS — X] + “=R¢ max [0, dS — X]}
R
which does not depend on the stock’s up/down probability, 7.

George Pennacchi University of lllinois

15/ 26



7.2: Binomial

Binomial Option Pricing cont'd

@ Since the stock’s expected rate of return equals
ur +d(1—7) —1, it need not be known or estimated to solve
for the no-arbitrage value of the option, c.
@ However, we do need to know u and d, the size of the stock’s
movements per period which determine its volatility.
@ Note also that we can rewrite ¢ as
c— ;f Few + (1= 7) o] (19)

where T = "ff:dd is the risk-neutral probability of the up state.

o 7 = m if individuals are risk-neutral since

[um+d(1—m)]S=RsS (20)

which implies that
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7.2: Binomial

Binomial Option Pricing cont'd

ﬂ__Rf_d
 u—d

so that 7 does equal 7 under risk neutrality.

=7 (21)

@ Thus, (19) can be expressed as
1 ~
Ct = ?E [Ct+1] (22)
f

where E [] denotes the expectation operator evaluated using
the risk-neutral probabilities 7 rather than the true, or
physical, probabilities 7.
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7.2: Binomial

Multiperiod Binomial Option Pricing

@ Next, consider the option's value with two periods prior to
maturity. The stock price process is

25
us <
s < dus (23)
/!
as { N

so that the option price process is
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

Cyuy = Max [O, u’S — X]

Cdy = max [0, duS — X] (24)

/
N\

Cd
Cdg = max [0, d?S — X]
@ We know how to solve one-period problems:
T + (1 —7) cqu
Rr
Tcqu + (1 —7) cdq
R¢

Cy =

(25)

Cd = (26)
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

@ With two periods to maturity, the next period cashflows of ¢,

and ¢y are replicated by a portfolio of A* = (Z“:dc)ds shares of

stock and B* = (”Lfi;‘)jf\,”f of bonds. No arbitrage implies

1
c=A*S+B*= I [Tey + (1 —7) cd] (27)
13
which, as before says that ¢; = R%E [ce+1]-

@ The market is complete over both the last period and
second-to-last periods. Substituting in for ¢, and ¢4, we have

1
c= 1 Tl +27 (1 = 7) cug + (1 = 7)? cdd]
f
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

% (7% max [0, u®S — X] + 27 (1 — &) max [0, duS — X]]
f

1 ~\2 2
+R7% [(1—7r) max [0, d S—XH

which says ¢; = R%E [ct4+2]. Note when a market is complete

each period, it becomes dynamically complete. By appropriate

trading in just two assets, payoffs in three states of nature can
be replicated.

@ Repeating this analysis for any period prior to maturity, we
always obtain

1
c=A*S+B* = - [Teu + (1 —7) cd] (28)
f‘
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

@ Repeated substitution for ¢,, ¢4, Cuy, Cuds Cdd+ Cuuu, and so
on, we obtain the formula, with n periods prior to maturity:

n n! , - —_
- ~j(1 _ 2\ n—jg _
c= R7 ;(j!(n_j)!)w (1-7)"7 max [0,/d"/S - X]
R (29)
or ¢; = %E[CH,,]. Define “3" as the minimum number of
upward jumps of S for it to exceed X.
@ Then for all j < a (out of the money):
max [0, /d" /S — X] =0 (30)
while for all j > a (in the money):

max [0, /d" 7S — X] = /d" IS — X (31)
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

@ Thus, the formula for ¢ can be simplified:

1 . n! - o
= — T ) Fa-m)"T [dds - X
TR [Z,-_a (ﬂ(n—f)!)”( ol ]}
(32)
@ Breaking up (32) into two terms, we have

« = s G 70 [ ]
_XR" [Z;_a (ﬂ(n”'_J)l) A1 %)"—f] (33)

The terms in brackets are complementary binomial
distribution functions, so that (33) can be written
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

c = S¢la;n, 7] — XR: "¢a; n, 7] (34)

where 7T’ = (%) 7 and ¢[a; n, 7] is the probability that the
sum of n random variables that equal 1 with probability 7 and
0 with probability 1 — 7 is > a.

e Formula (34) can converge to the Black-Scholes option
pricing formula as the period length goes to zero.

@ Suppose each period is of length At and keep T = nAt fixed
but let At — 0 as n — .
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7.2: Binomial

Multiperiod Binomial Option Pricing cont'd

o Next let u=e"VAt and d = 1/u = e VAL, which gives a
stock return variance of o per unit time.

@ Then as the number of periods n — oo, but the length of
each period At = L — 0, the Central Limit Theorem implies
that formula (34) converges to:

¢ = SN(2) = XR; TN (2= oV'T) (35)

where z = [In (XRi_T> + 102 T} / <0ﬁ> and N (-) is the

cumulative standard normal distribution function.
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7.3: Summary

Summary

@ Forward contract payoffs can be replicated using a static
trading strategy.

@ Option contract payoffs require a dynamic trading strategy.

@ A dynamically complete market allows us to use risk-neutral
valuation.

@ Dynamically complete markets imply replication of payoffs in
all future states, but we may need to execute many trades to
do so.
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