# Basics of Derivative Pricing

#### George Pennacchi

University of Illinois

| Pennaccl |  |
|----------|--|
|          |  |

### Introduction

- Derivative securities have cashflows that derive from another "underlying" variable, such as an asset price, interest rate, or exchange rate.
- The absence of arbitrage opportunities places restrictions on the derivative's value relative to that of its underlying asset.
- For forward contracts, no-arbitrage considerations alone may lead to an exact pricing formula.
- For options, no-arbitrage restrictions cannot determine an exact price, but only bounds on the option's price.
- An exact option pricing formula requires additional assumptions on the probability distribution of the underlying asset's returns (e.g., binomial).

#### Forward Contracts on Assets Paying Dividends

- Let  $F_{0\tau}$  be the date 0 forward price for exchanging one share of an underlying asset  $\tau$  periods in the future. This price is agreed to at date 0 but paid at date  $\tau > 0$  for delivery at date  $\tau$  of the asset.
- Hence, the date  $\tau > 0$  payoff to the long (*short*) party in this forward contract is  $S_{\tau} F_{0\tau}$ , ( $F_{0\tau} S_{\tau}$ ) where  $S_{\tau}$  is the date  $\tau$  spot price of one share of the underlying asset.
- The parties set  $F_{0\tau}$  to make the date 0 contract's value equal 0 (no payment at date 0).
- Let  $R_f > 1$  be the per-period risk-free return for borrowing or lending over the period from date 0 to date  $\tau$ , and let D be the date 0 present value of dividends paid by the underlying asset over the period from date 0 to date  $\tau$ .

University of Illinois

#### Forward Contract Cash Flows

 Consider a long forward contract and the trades that would exactly replicate its date τ payoffs: <u>Date 0 Trade</u> <u>Date 0 Cashflow</u> <u>Date τ Cashflow</u>

| Long Forward Contract | 0 | $S_{	au} - F_{0	au}$ |
|-----------------------|---|----------------------|
|-----------------------|---|----------------------|

#### **Replicating Trades** 1) Buy Asset and Se

| 1) Buy Asset and Sell Dividends | $-S_{0} + D$                       | $S_{	au}$            |
|---------------------------------|------------------------------------|----------------------|
| 2) Borrow                       | $R_f^{-\tau}F_{0\tau}$             | $-F_{0\tau}$         |
| Net Cashflow                    | $-S_0 + D + R_f^{-\tau} F_{0\tau}$ | $S_{	au} - F_{0	au}$ |

• In the absence of arbitrage, the cost of the replicating trades equals the zero cost of the long position:

$$S_0 - D - R_f^{-\tau} F_{0\tau} = 0 \tag{1}$$

or

$$F_{0\tau} = (S_0 - D) R_f^{\tau}$$
 (2)

George Pennacchi

# Forward Contract Replication

• If the contract had been initiated at a previous date, say date -1, at the forward price  $F_{-1\tau} = X$ , then the date 0 value (replacement cost) of the long party's payoff, say  $f_0$ , would still be the cost of replicating the two cashflows:

$$f_0 = S_0 - D - R_f^{-\tau} X$$
 (3)

- The forward price in equation (2) did not require an assumption regarding the random distribution of the underlying asset price,  $S_{\tau}$ , because it was a *static* replication strategy.
- Replicating option payoffs will entail, in general, a *dynamic* replication strategy requiring distributional assumptions.

University of Illinois

#### Basic Characteristics of Option Prices

- The owner of a *call* option has the right to buy an asset in the future at a pre-agreed price, called the *exercise* or *strike* price.
- Since the option owner's payoff is always non-negative, this buyer must make an initial payment to the seller.
- A *European* option can be exercised only at the maturity of the option contract.
- Let  $S_0$  and  $S_{\tau}$  be the current and maturity date prices per share of the underlying asset, X be the exercise price, and  $c_t$ and  $p_t$  be the date t prices of European call and put options, respectively.
- Then the maturity values of European call and put options are

$$c_{\tau} = \max\left[S_{\tau} - X, 0\right] \tag{4}$$

$$p_{\tau} = \max\left[X - S_{\tau}, 0\right] \tag{5}$$

## Lower Bounds on European Option Values

- Recall that the long (*short*) party's payoff of a forward contract is  $S_{\tau} F_{0\tau} (F_{0\tau} S_{\tau})$ .
- If  $F_{0\tau}$  is like an option's strike, X, then assuming  $X = F_{0\tau}$  implies the payoff of a call (*put*) option weakly dominates that of a long (*short*) forward.
- Because equation (3) is the current value of a long forward position contract, the European call's value must satisfy

$$c_0 \ge f_0 = S_0 - D - R_f^{-\tau} X$$
 (6)

• Furthermore, combining  $c_0 \ge 0$  with (6) implies

$$c_0 \geq \max\left[S_0 - D - R_f^{-\tau}X, 0\right] \tag{7}$$

• By a similar argument,

$$p_0 \ge \max[-f_0, 0] = \max[R_f^{-\tau}X + D - S_0, 0]$$
 (8)

# Put-Call Parity

• *Put-call parity* links options written on the same underlying, with the same maturity date, and exercise price.

$$c_0 + R_f^{-\tau} X + D = p_0 + S_0 \tag{9}$$

- Consider forming the following two portfolios at date 0:
  - Portfolio A = a put option having value p<sub>0</sub> and a share of the underlying asset having value S<sub>0</sub>
  - Portfolio B = a call option having value c<sub>0</sub> and a bond with initial value of R<sub>f</sub><sup>-τ</sup>X + D

Then at date  $\tau$ , these two portfolios are worth:

• Portfolio A =  

$$\max [X - S_{\tau}, 0] + S_{\tau} + DR_{f}^{\tau} = \max [X, S_{\tau}] + DR_{f}^{\tau}$$
• Portfolio B = 
$$\max [0, S_{\tau} - X] + X + DR_{f}^{\tau} = \max [X, S_{\tau}] + DR_{f}^{\tau}$$

## American Options

- An American option is at least as valuable as its corresponding European option because of its early exercise right.
- Hence if  $C_0$  and  $P_0$ , the current values of American options, then  $C_0 \ge c_0$  and  $P_0 \ge p_0$ .
- Some American options' early exercise feature has no value.
- Consider a European call option on a non-dividend-paying asset, and recall that  $c_0 \ge S_0 R_f^{-\tau} X$ .
- An American call option on the same asset exercised early is worth  $C_0 = S_0 X < S_0 R_f^{-\tau}X < c_0$ , a contradiction.
- For an American put option, selling the asset immediately and receiving \$X now may be better than receiving \$X at date  $\tau$  (which has a present value of  $R_f^{-\tau}X$ ). At exercise  $P_0 = X S_0$  may exceed  $R_f^{-\tau}X + D S_0$  if remaining dividends are small.

# **Binomial Option Pricing**

- The no-arbitrage assumption alone cannot determine an exact option price as a function of the underlying asset.
- However, particular distributional assumptions for the underlying asset can allow the option's payoff to be replicated by trading in the underlying asset and a risk-free asset.
- Cox, Ross, and Rubinstein (1979) developed a binomial model to value a European option on a non-dividend-paying stock.
- The model assumes that the current stock price, S, either moves up by a proportion u, or down by a proportion d, each period. The probability of an up move is π.



- Let  $R_f$  be one plus the risk-free rate for the period, where in the absence of arbitrage  $d < R_f < u$ .
- Let c equal the current value of a European call option written on the stock and having a strike price of X, so that its payoff at maturity τ equals max[0, S<sub>τ</sub> - X].
- Thus, one period prior to maturity:

$$c_u \equiv \max[0, uS - X]$$
 with probability  $\pi$   
 $c \swarrow$   
 $c_d \equiv \max[0, dS - X]$  with probability  $1 - \pi$   
(11)

- To value c, consider a portfolio containing Δ shares of stock and \$B of bonds so that its current value is ΔS + B.
- This portfolio's value evolves over the period as

$$\Delta uS + R_f B \text{ with probability } \pi$$

$$\Delta S + B \swarrow$$

$$\Delta dS + R_f B \text{ with probability } 1 - \pi$$
(12)

 With two securities (bond and stock) and two states (up or down), Δ and B can be chosen to replicate the option's payoffs:

$$\Delta u S + R_f B = c_u \tag{13}$$

$$\Delta dS + R_f B = c_d \tag{14}$$

• Solving for  $\Delta$  and B that satisfy these two equations:

$$\Delta^* = \frac{c_u - c_d}{(u - d)S} \tag{15}$$

$$B^* = \frac{uc_d - dc_u}{(u-d) R_f} \tag{16}$$

 Hence, a portfolio of Δ\* shares of stock and \$B\* of bonds produces the same cashflow as the call option.

## Binomial Option Pricing Example

• Therefore, the absence of arbitrage implies

$$c = \Delta^* S + B^* \tag{17}$$

where  $\Delta^*$  is the option's *hedge ratio* and  $B^*$  is the debt financing that are positive/negative (*negative/positive*) for calls (*puts*).

- Example: If S = \$50, u = 2, d = .5,  $R_f = 1.25$ , and X = \$50, then uS = \$100, dS = \$25,  $c_u = $50$ ,  $c_d = $0$ .
- Therefore,

$$\Delta^* = \frac{50 - 0}{(2 - .5)\,50} = \frac{2}{3}$$

$$B^* = \frac{0 - 25}{(2 - .5)\,1.25} = -\frac{40}{3}$$

so that

$$c = \Delta^* S + B^* = \frac{2}{3}(50) - \frac{40}{3} = \frac{60}{3} =$$
\$20

• This option pricing formula can be rewritten:

$$c = \Delta^* S + B^* = \frac{c_u - c_d}{(u - d)} + \frac{uc_d - dc_u}{(u - d)R_f}$$
(18)  
= 
$$\frac{\left[\frac{R_f - d}{u - d} \max[0, uS - X] + \frac{u - R_f}{u - d} \max[0, dS - X]\right]}{R_f}$$

which does not depend on the stock's up/down probability,  $\pi$ .

- Since the stock's expected rate of return equals
   uπ + d(1 - π) - 1, it need not be known or estimated to solve
   for the no-arbitrage value of the option, c.
- However, we do need to know *u* and *d*, the size of the stock's movements per period which determine its *volatility*.
- Note also that we can rewrite c as

$$c = \frac{1}{R_f} \left[ \widehat{\pi} c_u + (1 - \widehat{\pi}) c_d \right]$$
(19)

where  $\hat{\pi} \equiv \frac{R_f - d}{u - d}$  is the *risk-neutral* probability of the up state. •  $\hat{\pi} = \pi$  if individuals are risk-neutral since

$$[u\pi + d(1 - \pi)]S = R_f S$$
(20)

which implies that

George Pennacchi

$$\pi = \frac{R_f - d}{u - d} = \hat{\pi} \tag{21}$$

so that  $\widehat{\pi}$  does equal  $\pi$  under risk neutrality.

• Thus, (19) can be expressed as

$$c_t = \frac{1}{R_f} \widehat{E}\left[c_{t+1}\right] \tag{22}$$

where  $\widehat{E}[\cdot]$  denotes the expectation operator evaluated using the risk-neutral probabilities  $\widehat{\pi}$  rather than the true, or physical, probabilities  $\pi$ .

• Next, consider the option's value with *two periods prior to maturity*. The stock price process is



so that the option price process is

#### 7.2: Binomial

#### Multiperiod Binomial Option Pricing cont'd

$$c_{uu} \equiv \max \left[0, u^{2}S - X\right]$$

$$c_{u} \swarrow$$

$$c_{du} \equiv \max \left[0, duS - X\right]$$

$$c_{d} \swarrow$$

$$c_{dd} \equiv \max \left[0, d^{2}S - X\right]$$
(24)

• We know how to solve one-period problems:

$$c_{u} = \frac{\widehat{\pi}c_{uu} + (1 - \widehat{\pi})c_{du}}{R_{f}}$$
(25)  
$$c_{d} = \frac{\widehat{\pi}c_{du} + (1 - \widehat{\pi})c_{dd}}{R_{f}}$$
(26)

• With two periods to maturity, the next period cashflows of  $c_u$ and  $c_d$  are replicated by a portfolio of  $\Delta^* = \frac{c_u - c_d}{(u-d)S}$  shares of stock and  $B^* = \frac{uc_d - dc_u}{(u-d)R_f}$  of bonds. No arbitrage implies

$$c = \Delta^* S + B^* = \frac{1}{R_f} \left[ \hat{\pi} c_u + (1 - \hat{\pi}) c_d \right]$$
(27)

which, as before says that  $c_t = \frac{1}{R_f} \widehat{E}[c_{t+1}]$ .

 The market is complete over both the last period and second-to-last periods. Substituting in for c<sub>u</sub> and c<sub>d</sub>, we have

$$c=rac{1}{R_{f}^{2}}\left[\widehat{\pi}^{2}c_{uu}+2\widehat{\pi}\left(1-\widehat{\pi}
ight)c_{ud}+\left(1-\widehat{\pi}
ight)^{2}c_{dd}
ight]$$

#### 7.2: Binomial

#### Multiperiod Binomial Option Pricing cont'd

$$= \frac{1}{R_{f}^{2}} \left[ \widehat{\pi}^{2} \max \left[ 0, u^{2}S - X \right] + 2\widehat{\pi} \left( 1 - \widehat{\pi} \right) \max \left[ 0, duS - X \right] \right] \\ + \frac{1}{R_{f}^{2}} \left[ (1 - \widehat{\pi})^{2} \max \left[ 0, d^{2}S - X \right] \right]$$

which says  $c_t = \frac{1}{R_f^2} \widehat{E}[c_{t+2}]$ . Note when a market is complete each period, it becomes *dynamically complete*. By appropriate trading in just two assets, payoffs in three states of nature can be replicated.

Repeating this analysis for any period prior to maturity, we always obtain

$$c = \Delta^* S + B^* = \frac{1}{R_f} \left[ \hat{\pi} c_u + (1 - \hat{\pi}) c_d \right]$$
(28)

 Repeated substitution for c<sub>u</sub>, c<sub>d</sub>, c<sub>uu</sub>, c<sub>ud</sub>, c<sub>dd</sub>, c<sub>uuu</sub>, and so on, we obtain the formula, with n periods prior to maturity:

$$c = \frac{1}{R_f^n} \left[ \sum_{j=0}^n \left( \frac{n!}{j! (n-j)!} \right) \widehat{\pi}^j (1-\widehat{\pi})^{n-j} \max\left[0, u^j d^{n-j} S - X\right] \right]$$
(29)  
or  $c_t = \frac{1}{R_f^n} \widehat{E}\left[c_{t+n}\right]$ . Define "a" as the minimum number of upward jumps of S for it to exceed X.

• Then for all *j* < *a* (out of the money):

$$\max\left[0, u^{j} d^{n-j} S - X\right] = 0 \tag{30}$$

while for all  $j \ge a$  (in the money):

$$\max\left[0, u^{j} d^{n-j} S - X\right] = u^{j} d^{n-j} S - X$$
(31)

• Thus, the formula for c can be simplified:

$$c = \frac{1}{R_{f}^{n}} \left[ \sum_{j=a}^{n} \left( \frac{n!}{j! (n-j)!} \right) \widehat{\pi}^{j} (1-\widehat{\pi})^{n-j} \left[ u^{j} d^{n-j} S - X \right] \right]$$
(32)

• Breaking up (32) into two terms, we have

$$c = S\left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!}\right) \widehat{\pi}^{j} (1-\widehat{\pi})^{n-j} \left[\frac{u^{j} d^{n-j}}{R_{f}^{n}}\right]\right] -XR_{f}^{-n} \left[\sum_{j=a}^{n} \left(\frac{n!}{j! (n-j)!}\right) \widehat{\pi}^{j} (1-\widehat{\pi})^{n-j}\right]$$
(33)

The terms in brackets are complementary binomial distribution functions, so that (33) can be written

$$c = S\phi[a; n, \hat{\pi}'] - XR_f^{-n}\phi[a; n, \hat{\pi}]$$
(34)

where  $\widehat{\pi}' \equiv \left(\frac{u}{R_f}\right) \widehat{\pi}$  and  $\phi[a; n, \widehat{\pi}]$  is the probability that the sum of *n* random variables that equal 1 with probability  $\widehat{\pi}$  and 0 with probability  $1 - \widehat{\pi}$  is  $\geq a$ .

- Formula (34) can converge to the Black-Scholes option pricing formula as the period length goes to zero.
- Suppose each period is of length Δt and keep T = nΔt fixed but let Δt → 0 as n → ∞.

- Next let  $u = e^{\sigma\sqrt{\Delta t}}$  and  $d = 1/u = e^{-\sigma\sqrt{\Delta t}}$ , which gives a stock return variance of  $\sigma^2$  per unit time.
- Then as the number of periods n→∞, but the length of each period Δt = T/n → 0, the Central Limit Theorem implies that formula (34) converges to:

$$c = SN(z) - XR_{f}^{-T}N\left(z - \sigma\sqrt{T}\right)$$
(35)

where 
$$z \equiv \left[ \ln \left( \frac{S}{XR_{f}^{-T}} \right) + \frac{1}{2}\sigma^{2}T \right] / \left(\sigma\sqrt{T}\right)$$
 and  $N(\cdot)$  is the cumulative standard normal distribution function.



- Forward contract payoffs can be replicated using a static trading strategy.
- Option contract payoffs require a dynamic trading strategy.
- A dynamically complete market allows us to use risk-neutral valuation.
- Dynamically complete markets imply replication of payoffs in all future states, but we may need to execute many trades to do so.