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Introduction

The first order conditions from an individual’s multiperiod
consumption and portfolio choice problem can be interpreted
as equilibrium conditions for asset pricing.

A particular equilibrium asset pricing model where asset
supplies are exogenous is the Lucas (1978) endowment
economy.

We also consider bubbles: nonfundamental asset price
dynamics.
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Asset Pricing in the Multiperiod Model

In the multiperiod model, the individual’s objective is

max
Cs ,{ωis},∀s ,i

Et

[
T−1∑
s=t

U (Cs , s) + B (WT ,T )

]
(1)

which is solved as a series of single period problems using the
Bellman equation:

J (Wt , t) = max
Ct ,{ωi,t}

U (Ct , t) + Et [J (Wt+1, t + 1)] (2)

This led to the first-order conditions

UC (C ∗t , t) = Rf ,tEt [JW (Wt+1, t + 1)]

= JW (Wt , t) (3)

Et [RitJW (Wt+1, t + 1)] = Rf ,tEt [JW (Wt+1, t + 1)] , i = 1, ..., n
(4)
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Multiperiod Pricing Kernel

This model has equilibrium implications even if assumptions
about utility, income, and asset return distributions do not
lead to explicit formulas for C ∗t and ω

∗
it .

Substituting the envelope condition UC (C ∗t , t) = JW (Wt , t)
at t + 1 into the right-hand side of the first line of (3),

UC (C ∗t , t) = Rf ,tEt [JW (Wt+1, t + 1)]

= Rf ,tEt
[
UC
(
C ∗t+1, t + 1

)]
(5)

Furthermore, substituting (4) into (3) and, again, using the
envelope condition at date t + 1 allows us to write

UC (C ∗t , t) = Et [RitJW (Wt+1, t + 1)]

= Et
[
RitUC

(
C ∗t+1, t + 1

)]
(6)

or
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Multiperiod Pricing Kernel cont’d

1 = Et [mt ,t+1Rit ]

= Rf ,tEt [mt ,t+1] (7)

where mt ,t+1 ≡ UC
(
C ∗t+1, t + 1

)
/UC (C ∗t , t) is the SDF

(pricing kernel) between dates t and t + 1.
The relationship derived in the single-period context holds
more generally: Updating equation (6) for risky asset j one
period, UC

(
C ∗t+1, t + 1

)
= Et+1

[
Rj ,t+1UC

(
C ∗t+2, t + 2

)]
,

and substituting in the right-hand side of the original (6), one
obtains

UC (C ∗t , t) = Et
[
RitEt+1

[
Rj ,t+1UC

(
C ∗t+2, t + 2

)]]
= Et

[
RitRj ,t+1UC

(
C ∗t+2, t + 2

)]
(8)
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Multiperiod Pricing Kernel cont’d

or
1 = Et [RitRj ,t+1mt ,t+2] (9)

where mt ,t+2 ≡ UC
(
C ∗t+2, t + 2

)
/UC (C ∗t , t) is the marginal

rate of substitution, or the SDF, between dates t and t + 2.
By repeated substitution, (9) can be generalized to

1 = Et [Rt ,t+kmt ,t+k ] (10)

where mt ,t+k ≡ UC
(
C ∗t+k , t + k

)
/UC (C ∗t , t) and Rt ,t+k is

the return from any trading strategy involving multiple assets
over the period from dates t to t + k.
Equation (10) says that expected marginal utility-weighted
returns are equal across all time periods and assets.
These moment conditions are often tested using a Generalized
Method of Moments technique.
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Including Dividends in Asset Returns

Let the return on the i th risky asset, Rit , include a dividend
payment made at date t + 1, di ,t+1, along with a capital gain,
Pi ,t+1 − Pit :

Rit =
di ,t+1 + Pi ,t+1

Pit
(11)

Substituting (11) into (7) and rearranging gives

Pit = Et

[
UC
(
C ∗t+1, t + 1

)
UC (C ∗t , t)

(di ,t+1 + Pi ,t+1)

]
(12)

Similar to what was done in equation (8), substitute for Pi ,t+1
using equation (12) updated one period to solve forward this
equation.
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Including Dividends in Asset Returns cont’d

Pit = Et

[
UC
(
C ∗t+1, t + 1

)
UC (C ∗t , t)

(
di,t+1 +

UC
(
C ∗t+2, t + 2

)
UC
(
C ∗t+1, t + 1

) (di,t+2 + Pi,t+2
))]

= Et

[
UC
(
C ∗t+1, t + 1

)
UC (C ∗t , t)

di,t+1 +
UC
(
C ∗t+2, t + 2

)
UC (C ∗t , t)

(
di,t+2 + Pi,t+2

)]
(13)

Repeating this type of substitution, that is, solving forward
the difference equation (13), gives us

Pit = Et

 T∑
j=1

UC
(
C ∗t+j , t + j

)
UC (C ∗t , t)

di ,t+j +
UC
(
C ∗t+T , t + T

)
UC (C ∗t , t)

Pi ,t+T


(14)

where the integer T reflects a large number of future periods.
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Including Time Preference δ

If utility is of the form U (Ct , t) = δtu (Ct), where
δ = 1

1+ρ < 1, then (14) becomes

Pit = Et

 T∑
j=1

δj
uC
(
C ∗t+j

)
uC (C ∗t )

di ,t+j + δT
uC
(
C ∗t+T

)
uC (C ∗t )

Pi ,t+T


(15)

If individuals that have infinite lives or a bequest motive and

limT→∞ Et

[
δT

uC (C ∗t+T )
uC (C ∗t )

Pi ,t+T

]
= 0 (no speculative price

“bubbles”), then

Pit = Et

 ∞∑
j=1

δj
uC
(
C ∗t+j

)
uC (C ∗t )

di ,t+j

 (16)
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Dividends and Consumption

In terms of the SDF mt , t+j ≡ δjuC
(
C ∗t+j

)
/uC (C ∗t ):

Pit = Et

 ∞∑
j=1

mt , t+jdi ,t+j

 (17)

We next consider modeling the supply side of an economy to
develop a theory of risky assets’dividends.
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Lucas Model of Asset Pricing

Lucas (1978) makes (17) into a general equilibrium model by
assuming an endowment economy with infinitely-lived
representative individuals.
Risky asset i represents an ownership claim on an exogenous
output process that pays a real dividend of dit at date t.
The dividend is nonstorable and non-reinvestable. With no
wage income, aggregate consumption equals the total
dividends paid by all of the n assets at that date:

C ∗t =
n∑
i=1

dit (18)

Exogenous output implies that consumption and the
stochastic discount factor are exogenous, which makes it easy
to solve for the equilibrium prices.
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Examples

If the representative individual is risk-neutral, so that
u(C ) = C and uC is a constant (1), then (17) becomes

Pit = Et

 ∞∑
j=1

δjdi ,t+j

 (19)

If utility is logarithmic (u (Ct) = lnCt) and aggregate dividend
dt =

∑n
i=1 dit , the price of risky asset i is given by

Pit = Et

 ∞∑
j=1

δj
C ∗t
C ∗t+j

di ,t+j


= Et

 ∞∑
j=1

δj
dt
dt+j

di ,t+j

 (20)
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Examples cont’d

Under logarithmic utility, we can price the market portfoio
without making assumptions regarding the distribution of dit
in (20).
If Pt is the value of aggregate dividends, then from (20):

Pt = Et

 ∞∑
j=1

δj
dt
dt+j

dt+j


= dt

δ

1− δ (21)

Note that higher expected future dividends, dt+j , are exactly
offset by a lower expected marginal utility of consumption,
mt , t+j = δjdt/dt+j , leaving the value of a claim on this
output process unchanged.
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Examples cont’d

For more general power utility, u (Ct) = C
γ
t /γ, we have

Pt = Et

 ∞∑
j=1

δj
(
dt+j
dt

)γ−1
dt+j


= d1−γt Et

 ∞∑
j=1

δjdγt+j

 (22)

which does depend on the distribution of future dividends.
The value of a hypothetical riskless asset that pays a
one-period dividend of $1 is

Pft =
1
Rft

= δEt

[(
dt+1
dt

)γ−1]
(23)
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Examples cont’d

We can view the Mehra and Prescott (1985) finding in its true
multiperiod context: they used equations such as (22) and
(23) with dt = C ∗t to see if a reasonable value of γ produces a
risk premium (excess average return over a risk-free return)
that matches that of market portfolio of U.S. stocks’historical
average excess returns.
Reasonable values of γ could not match the historical risk
premium of 6 %, a result they described as the equity
premium puzzle.
As mentioned earlier, for reasonable levels of risk aversion,
aggregate consumption appears to vary too little to justify the
high Sharpe ratio for the market portfolio of stocks.
The moment conditions in (22) and (23) require a highly
negative value of γ to fit the data.
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Labor Income

We can add labor income to the market endowment
(Cecchetti, Lam and Mark, 1993). Human capital pays a
wage payment of yt at date t, also non-storable. Hence,
equilibrium aggregate consumption equals

C ∗t = dt + yt (24)

so that equilibrium consumption no longer equals dividends.
The value of the market portfolio is:

Pt = Et

∑∞
j=1 δ

j
uC
(
C ∗t+j

)
uC (C ∗t )

dt+j


= Et

[∑∞
j=1 δ

j
(
C ∗t+j
C ∗t

)γ−1
dt+j

]
(25)
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Labor Income cont’d

Now specify separate lognormal processes for dividends and
consumption:

ln
(
C ∗t+1/C

∗
t

)
= µc + σcηt+1 (26)

ln (dt+1/dt) = µd + σdεt+1

where the error terms are serially uncorrelated and distributed
as (

ηt
εt

)
˜N
((

0
0

)
,

(
1 ρ
ρ 1

))
(27)

Now what is the equilibrium price of the market portfolio?
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Labor Income cont’d

When δeα < 1, the expectation in (25) equals

Pt = dt
δeα

1− δeα (28)

where

α ≡ µd − (1− γ)µc +
1
2

[
(1− γ)2 σ2c + σ2d

]
− (1− γ) ρσcσd

(29)
(See Exercise 6.3.)
Equation (28) equals (21) when γ = 0, µd = µc , σc = σd ,
and ρ = 1, which is the special case of log utility and no labor
income.
With no labor income (µd = µc , σc = σd , ρ = 1) but γ 6= 0,
we have α = γµc +

1
2γ
2σ2c , which is increasing in the growth

rate of dividends (and consumption) when 1 > γ > 0.
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Labor Income cont’d

When γ > 0, greater dividend growth leads individuals to
desire increased savings due to high intertemporal elasticity
(ε = 1/ (1− γ) > 1). Market clearing requires the value of
the market portfolio to rise, raising income or wealth to make
desired consumption rise to equal the fixed supply.

The reverse occurs when γ < 0, as the income or wealth effect
will exceed the substitution effect.

For the general case of labor income where α is given by
equation (29), a lower correlation between consumption and
dividends (decline in ρ) increases α.

Since ∂Pt/∂α > 0, lower correlation raises the value of the
market portfolio because it is a better hedge against uncertain
labor income.
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Rational Asset Price Bubbles

Recall that an equilibrium asset pricing implication the
individual’s consumption and portfolio choices was equation
(12):

Pit = Et

[
UC (Ct+1, t + 1)
UC (Ct , t)

(di ,t+1 + Pi ,t+1)
]

(30)

which for U (Ct , t) = δtu (Ct) is

Pit = Et

[
δuC (Ct+1)
uC (Ct)

(di ,t+1 + Pi ,t+1)
]

(31)

Equation (31) can be rearranged as

Et [Pi ,t+1uC (Ct+1)] = δ−1PituC (Ct)− Et [uC (Ct+1) di ,t+1]
(32)
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Rational Asset Price Bubbles cont’d

Now define pt ≡ PituC (Ct), the product of the asset price
and the marginal utility of consumption.

Then equation (32) is

Et [pt+1] = δ−1pt − Et
[
uC
(
C ∗t+1

)
di ,t+1

]
(33)

where δ−1 = 1+ ρ > 1 where ρ is the subjective rate of time
preference.
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Rational Asset Price Bubbles cont’d

Under the assumption that

lim
T→∞

Et
[
δT uc (Ct+T )Pi ,t+T

]
= lim
T→∞

Et
[
δT pT

]
= 0 (34)

we obtained a solution to this equation given by equation (17)
which we can call the fundamental solution, ft :

pt = ft ≡ Et

 ∞∑
j=1

δjuC (Ct+j ) di ,t+j

 (35)

The sum in (35) converges if the marginal utility-weighted
dividends are expected to grow more slowly than the time
preference discount factor.

George Pennacchi University of Illinois

Multiperiod Market Equilibrium 22/ 30



6.1: Pricing 6.2: Lucas 6.3: Bubbles 6.4: Summary

Rational Asset Price Bubbles cont’d

There are other solutions to (33) of the form pt = ft + bt
where the bubble component bt is any process that satisfies

Et [bt+1] = δ−1bt = (1+ ρ) bt (36)

This is easily verified by substitution into (33):

Et [ft+1 + bt+1] = δ−1 (ft + bt)− Et
[
uC
(
C ∗t+1

)
di ,t+1

]
Et [ft+1] + Et [bt+1] = δ−1ft + δ−1bt − Et

[
uC
(
C ∗t+1

)
di ,t+1

]
Et [bt+1] = δ−1bt = (1+ ρ) bt (37)

where in the last line of (37) uses the fact that ft satisfies the
difference equation. Since δ−1 > 1, bt explodes in expected
value:
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Bubble Examples

lim
i→∞

Et [bt+i ] = lim
i→∞

(1+ ρ)i bt =
{
+∞ if bt > 0
−∞ if bt < 0

(38)

The exploding nature of bt provides a rationale for interpreting
the general solution pt = ft + bt , bt 6= 0, as a bubble solution.
Suppose that bt follows a deterministic time trend:

bt = b0 (1+ ρ)
t (39)

Then if b0 > 0, the solution

pt = ft + b0 (1+ ρ)
t (40)

implies that the marginal utility-weighted asset price grows
exponentially forever.
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Bubble Examples cont’d

Next, consider a possibly more realistic modeling of a
“bursting”bubble proposed by Blanchard (1979):

bt+1 =
{ 1+ρ

q bt + et+1 with probability q
zt+1 with probability 1− q

(41)
with Et [et+1] = Et [zt+1] = 0.

The bubble continues with probability q each period but
“bursts”with probability 1− q.
This process satisfies the condition in (36), so that
pt = ft + bt is again a valid bubble solution, and the expected
return conditional on no crash is higher than in the infinite
bubble.
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Likelihood of Rational Bubbles

Additional economic considerations may rule out many
rational bubbles: consider negative bubbles where bt < 0.

From (38) individuals must expect that at some future date
τ > t that pτ = fτ + bτ can be negative.

Since marginal utility is always positive, Pit = pt/uC (Ct)
must be expected to become negative, which is inconsistent
with limited-liability securities.
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Likelihood of Rational Bubbles cont’d

Now note that, in general, the bubble component satisfying
Et [bt+1] = δ−1bt = (1+ ρ) bt can be rewritten as

bt+1 = (1+ ρ) bt + εt+1 (42)

where Et [εt+1] = 0.

This process implies

bt = (1+ ρ)
t b0 +

t∑
s=1

(1+ ρ)t−s εs (43)

where εs , s = 1, ..., t are each mean-zero innovations.

An implication is that bubbles that burst and start again can
be ruled out. Why?
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Likelihood of Rational Bubbles cont’d

To avoid negative values of bt (and negative expected future
prices), realizations of εt must satisfy

εt ≥ − (1+ ρ) bt−1, ∀t ≥ 0 (44)

This is due to

εt = bt − (1+ ρ) bt−1
bt = εt + (1+ ρ) bt−1 > 0

εt ≥ − (1+ ρ) bt−1
For example, if bt = 0 so that a bubble does not exist at date
t, then from (44) and the requirement that εt+1 have mean
zero, it must be the case that εt+1 = 0 with probability 1.
Hence, if a bubble currently does not exist, it cannot get
started.
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Likelihood of Rational Bubbles cont’d

Moreover, the bursting and then restarting bubble in (41)
could only avoid a negative value of bt+1 if zt+1 = 0 with
probability 1 and et+1 = 0 whenever bt = 0. Hence, this
type of bubble would need to be positive on the first trading
day, and once it bursts it could never restart.

Tirole (1982) considers an economy model with a finite
number of agents and shows that rational individuals will not
trade assets at prices above their fundamental values.

Santos and Woodford (1997) consider rational bubbles in a
wide variety of economies and find only a few examples of the
overlapping generations type where they can exist.

If conditions for rational bubbles are limited yet bubbles seem
to occur, some irrationality may be required.
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Summary

If an asset’s dividends are modeled explicitly, the asset’s price
satisfies a discounted dividend formula.

The Lucas endowment economy takes this a step further by
equating aggregate dividends to consumption, simplifying
valuation of claims on aggregate dividends.

In an infinite horizon model, rational asset price bubbles are
possible but additional aspects of the economic environment
can often rule them out.
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