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Introduction

The previous single period consumption and portfolio choice
problem is now extended to determining consumption and portfolio
choices over a multiple period planning horizon.

We now consider expected utility maximization over many
periods.

Dynamic programming results in a recursive solution.

It allows us to transform multiperiod decisions into multiple
single-period decisions.

By deriving individual asset demands, we build the foundation
for an intertemporal general equilibrium asset pricing model.
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Assumptions and Notation

An individual makes decisions at the start of each unit-length
period during a T -period planning horizon. Let the initial date
be 0.
Denote consumption at date t as Ct , t = 0, ...,T − 1, and a
terminal bequest as WT , where Wt indicates the individual’s
level of wealth at date t.
Expected utility is assumed to be time-separable, or additively
separable:

E0 [Υ (C0,C1, ...,CT−1,WT )] = E0

[
T−1∑
t=0

U (Ct , t) + B (WT ,T )

]
(1)

where U and B are increasing, concave functions of
consumption and wealth, respectively.
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Wealth Dynamics

Let date t wage income be yt . Date t savings of
St ≡ (Wt + yt − Ct) is allocated between n risky assets and
the risk-free asset, returning Rit and Rft respectively over the
interval t to t + 1.

The evolution of the individual’s tangible wealth is

Wt+1 = (Wt + yt − Ct)
(
Rft +

n∑
i=1

ωit (Rit − Rft)
)
(2)

= StRt

where ωit is the portfolio weight of risky asset i and Rt ≡
Rft +

∑n
i=1 ωit (Rit − Rft) is the total portfolio return from

date t to t + 1.
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Multiperiod Decisions
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Solving the Multiperiod Model

Define J (Wt , t) as the derived utility of wealth function:

J (Wt , It , t) ≡ max
Cs ,{ωis},∀s ,i

Et

[
T−1∑
s=t

U (Cs , s) + B (WT ,T )

]
(3)

where “max”means to choose the decisions Cs and {ωis} for
s = t, t + 1, ...,T − 1 and i = 1, ..., n so as to maximize the
expected value of the term in brackets.

J is a function of current wealth and information up until and
including date t, but not current or future decisions.

We solve this problem with backward dynamic programming,
first at T − 1, then at T − 2, all the way back to 0.
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Final Period Solution

From the definition of J, at time T we have

J (WT ,T ) = ET [B (WT ,T )] = B (WT ,T ) (4)

Working backwards, consider the individual’s problem at date
T − 1 with a single period left in the planning horizon.
J (WT−1,T − 1) = max

CT−1,{ωi,T−1}
ET−1 [U (CT−1,T − 1) + B (WT ,T )](5)

= max
CT−1,{ωi,T−1}

U (CT−1,T − 1) + ET−1 [B (WT ,T )]

To clarify how WT depends on CT−1 and {ωi ,T−1}, substitute
equation (2) for t = T − 1 into equation (5):
J (WT−1,T − 1) = max

CT−1,{ωi,T−1}
U (CT−1,T − 1) + ET−1 [B (ST−1RT−1,T )]

(6)

where recall that ST−1 ≡ WT−1 + yT−1 − CT−1 and RT−1 ≡
Rf ,T−1 +

∑n
i=1 ωi ,T−1 (Ri ,T−1 − Rf ,T−1).
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T − 1 Solution

Differentiate with respect to CT−1 and {ωi ,T−1} and set the
results to zero:

UC (CT−1,T − 1)− ET−1 [BW (WT ,T )RT−1] = 0 (7)

ET−1 [BW (WT ,T ) (Ri ,T−1 − Rf ,T−1)] = 0, i = 1, ..., n (8)

where the subscripts on U and B denote partial differentiation.
Note ∂B (WT ,T ) /∂CT−1 = BW ∂WT /∂CT−1 =
BW ∂ (ST−1RT−1) /∂CT−1 = −BW RT−1 since ST−1 depends
on CT−1.
Using (8), we see that (7) can be rewritten

UC (CT−1,T − 1)

= ET−1

[
BW (WT ,T )

(
Rf ,T−1 +

n∑
i=1

ωi,T−1
(
Ri,T−1 − Rf ,T−1

))]
= Rf ,T−1ET−1 [BW (WT ,T )] (9)
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T − 1 Solution cont’d

Substitute the optimal decisions C ∗T−1 and ω
∗
i ,T−1 back into

(6) and differentiate totally with respect to WT−1:

JW = UC
∂C ∗T−1
∂WT−1

+ ET−1

[
BWT ·

(
dWT

dWT−1

)]

= UC
∂C ∗T−1
∂WT−1

+ ET−1

[
BWT ·

(
∂WT

∂WT−1
+

n∑
i=1

∂WT

∂ω∗i,T−1

∂ω∗i,T−1
∂WT−1

+
∂WT

∂C ∗T−1

∂C ∗T−1
∂WT−1

)]

= UC
∂C ∗T−1
∂WT−1

+ ET−1

[
BWT ·

(
n∑
i=1

[
Ri,T−1 − Rf ,T−1

]
ST−1

∂ω∗i,T−1
∂WT−1

+RT−1

(
1 −

∂C ∗T−1
∂WT−1

))]
(10)
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T − 1 Solution cont’d
Using the first-order condition (8),
ET−1 [BWT (Ri ,T−1 − Rf ,T−1)] = 0, as well as (9),
UC = ET−1 [BWTRT−1], (10) simplifies to

JW = UC
∂C ∗T−1
∂WT−1

− ET−1
[
BWT RT−1

] ∂C ∗T−1
∂WT−1

+ ET−1
[
BWT RT−1

]
= ET−1

[
BWT RT−1

]

Using (9) once again, this can be rewritten as

JW (WT−1,T − 1) = UC
(
C ∗T−1,T − 1

)
(11)

This “envelope condition” says that the individual’s optimal
policy equates her marginal utility of current consumption,
UC , to her marginal utility of wealth (future consumption).
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T − 2 Solution (Deriving the Bellman Equation)

Next, we solve the individual’s problem at T − 2:

J (WT−2,T − 2) = max
CT−2,{ωi,T−2}

U (CT−2,T − 2)

+ET−2 [U (CT−1,T − 1) + B (WT ,T )] (12)

We optimize over CT−2 and {ωi ,T−2} for a function that
includes U (CT−1,T − 1) + B (WT ,T ) which depend on
future decisions CT−1 and {ωi ,T−1}.
The Principle of Optimality informs us how to do this:

An optimal set of decisions has the property that given an initial
decision, the remaining decisions must be optimal with respect to
the outcome that results from the initial decision.
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Deriving the Bellman Equation cont’d

The “max” in (12) is over all remaining decisions, but the
Principle of Optimality says that whatever decision is made in
period T − 2, given the outcome, the remaining decisions (for
period T − 1) must be optimal. In other words:

max
{(T−2),(T−1)}

(Y ) = max
{T−2}

[
max

{T−1,|(T−2)}
(Y )

]
(13)

This principle allows us to rewrite (12) as

J (WT−2,T − 2) = max
CT−2,{ωi,T−2}

{U (CT−2,T − 2)+ (14)

ET−2

[
max

CT−1,{ωi,T−1}
ET−1 [U (CT−1,T − 1) + B (WT ,T )]

]}
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Deriving the Bellman Equation cont’d

Then, using the definition of J (WT−1,T − 1) from (5),
equation (14) can be rewritten as

J (WT−2,T − 2) = max
CT−2,{ωi,T−2}

U (CT−2,T − 2) + ET−2 [J (WT−1,T − 1)]

(15)

The recursive condition (15) is the Bellman (1957) equation.

The only difference between a one-period problem (5) and this
is that (15) replaces the known function of wealth next
period, B, with another (known in principle) function of
wealth next period, J.

Yet, the solution to (15) is of the same form as that for (5).
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The General Solution

Thus, the optimality conditions for (15) are

UC
(
C ∗T−2,T − 2

)
= ET−2 [JW (WT−1,T − 1)RT−2]

= Rf ,T−2ET−2 [JW (WT−1,T − 1)]

= JW (WT−2,T − 2) (16)

where the second line is implied by the FOC:

ET−2 [Ri ,T−2JW (WT−1,T − 1)] =

Rf ,T−2ET−2 [JW (WT−1,T − 1)] ∀i (17)

From the preceding pattern, inductive reasoning implies that
for any t = 0, 1, ...,T − 1, we have the Bellman equation:

J (Wt , t) = max
Ct ,{ωi,t}

U (Ct , t) + Et [J (Wt+1, t + 1)] (18)
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The General Solution cont’d

and, therefore, the date t optimality conditions are

UC (C ∗t , t) = Et [JW (Wt+1, t + 1)Rt ]

= Rf ,tEt [JW (Wt+1, t + 1)]

= JW (Wt , t) (19)

Et [Ri ,tJW (Wt+1, t + 1)] = Rf ,tEt [JW (Wt+1, t + 1)] , i = 1, ..., n
(20)

Equations (19) and (20) equate the marginal utilities of
consumption and wealth and set portfolio weights to equate
all assets’expected marginal utility-weighted asset returns.
These conditions depend on future investment opportunities
(Ri ,t+j ,Rf ,t+j , j ≥ 1), income flows, yt+j , and states of the
world affecting utilities (U (·, t + j)).
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The General Solution cont’d

Solving this system involves starting from the end of the
planning horizon and dynamically programing backwards
toward the present.

Step Action
1 Construct J (WT ,T ).
2 Solve for C ∗T−1 and {ωi ,T−1}, i = 1, ..., n.
3 Substitute decisions in step 2 to construct J (WT−1,T − 1).
4 Solve for C ∗T−2 and {ωi ,T−2}, i = 1, ..., n.
5 Substitute decisions in step 4 to construct J (WT−2,T − 2).
6 Repeat steps 4 and 5 for date T − 3.
7 Repeat step 6 for all prior dates until date 0 is reached.
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The General Solution cont’d

By following this recursive procedure, we find that the optimal
policy will be of the form

C ∗t = g [Wt , yt , It , t] (21)

ω∗it = h [Wt , yt , It , t] (22)

Deriving analytical expressions for the functions g and h is not
always possible, in which case numerical solutions satisfying
the first-order conditions at each date can be computed.

Next we consider an example with analytical solutions.
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Log Utility

Assume U (Ct , t) ≡ δt ln [Ct ], B (WT ,T ) ≡ δT ln [WT ], and
yt ≡ 0 ∀ t, where δ = 1

1+ρ . At date T − 1, using condition
(7):

UC (CT−1,T − 1) = ET−1 [BW (WT ,T )RT−1] (23)

δT−1
1

CT−1
= ET−1

[
δT
RT−1
WT

]
= ET−1

[
δT

RT−1
ST−1RT−1

]
=

δT

ST−1
=

δT

WT−1 − CT−1
or

C ∗T−1 =
1

1+ δ
WT−1 (24)

Consumption for this log utility investor is a fixed proportion
of wealth and independent of investment opportunities.
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FOCs

Conditions (8) imply

ET−1
[
BWT Ri,T−1

]
= Rf ,T−1ET−1

[
BWT

]
, i = 1, ..., n

δT ET−1

[
Ri,T−1

ST−1RT−1

]
= δT Rf ,T−1ET−1

[
1

ST−1RT−1

]
ET−1

[
Ri,T−1
RT−1

]
= Rf ,T−1ET−1

[
1

RT−1

]
(25)

Moreover, with log utility (25) equals unity, since from (9):
UC (CT−1,T − 1) = Rf ,T−1ET−1 [BW (WT ,T )]

δT−1

C ∗T−1
= Rf ,T−1ET−1

[
δT

1

ST−1RT−1

]

1 =
δC ∗T−1Rf ,T−1
WT−1 − C ∗T−1

ET−1

[
1

RT−1

]
1 = Rf ,T−1ET−1

[
1

RT−1

]
(26)
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FOCs cont’d

Here we substituted for C ∗T−1 using (24) in the third to fourth
line of (26).

While we would need to make specific assumptions regarding
the distribution of asset returns in order to derive the portfolio
weights {ω∗i ,T−1} satisfying (25), note that the conditions in
(25) are rather special in that they do not depend on WT−1,
CT−1, or δ, but only on the particular distribution of asset
returns.

Next we solve for J (WT−1,T − 1) by substituting in the date
T − 1 optimal consumption and portfolio rules into the
individual’s objective function.

Denoting R∗t ≡ Rf ,t +
∑n
i=1 ω

∗
it (Rit − Rft) as the individual’s

total optimal portfolio return, we have
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FOCs cont’d

J (WT−1,T − 1) = δT−1 ln
[
C ∗T−1

]
+ δT ET−1

[
ln
[
R∗T−1

(
WT−1 − C ∗T−1

)]]
= δT−1 (− ln [1 + δ] + ln [WT−1]) +

δT
(
ET−1

[
ln
[
R∗T−1

]]
+ ln

[
δ

1 + δ

]
+ ln [WT−1]

)
= δT−1 [(1 + δ) ln [WT−1] + HT−1] (27)

where HT−1 ≡ − ln [1+ δ] + δ ln
[

δ
1+δ

]
+ δET−1

[
ln
[
R∗T−1

]]
.

Notably, from (25) ω∗i ,T−1 does not depend on WT−1, and
therefore R∗T−1 and HT−1 do not depend on WT−1.

At time T − 2, from equation (15) we have
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FOCs cont’d

J (WT−2,T − 2) = max
CT−2,{ωi,T−2}

U (CT−2,T − 2) + ET−2 [J (WT−1,T − 1)]

= max
CT−2,{ωi,T−2}

δT−2 ln [CT−2]

+δT−1ET−2 [(1 + δ) ln [WT−1] + HT−1] (28)

Using (16), the optimality condition for consumption is

UC
(
C ∗T−2,T − 2

)
= ET−2 [JW (WT−1,T − 1)RT−2]

δT−2

CT−2
= (1+ δ) δT−1ET−2

[
RT−2

ST−2RT−2

]
=

(1+ δ) δT−1

WT−2 − CT−2
(29)

or
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FOCs cont’d

C ∗T−2 =
1

1+ δ + δ2
WT−2 (30)

Using (17), the optimality conditions for {ω∗i ,T−2} turn out to
be of the same form as at T − 1:

ET−2

[
Ri ,T−2
R∗T−2

]
= Rf ,T−2ET−2

[
1

R∗T−2

]
, i = 1, ..., n (31)

and, as in the case of T − 1, equation (31) equals unity:
δT−2

C ∗T−2
= Rf ,T−2δ

T−1ET−2

[
1 + δ

ST−2RT−2

]

1 =
δ (1 + δ)C ∗T−2Rf ,T−2

WT−2 − C ∗T−2
ET−2

[
1

RT−2

]
1 = Rf ,T−2ET−2

[
1

RT−2

]
(32)
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Recognizing the above pattern, the optimal consumption and
portfolio rules for any prior date, t, are

C ∗t =
1

1+ δ + ...+ δT−t
Wt =

1− δ
1− δT−t+1

Wt (33)

(using the definition of a geometric sum) and

Et

[
Ri ,t
R∗t

]
= RftEt

[
1
R∗t

]
= 1, i = 1, ..., n (34)

Hence, optimal consumption and portfolio rules are separable
for a log utility individual.

The consumption-savings decision does not depend on the
distribution of asset returns, and optimal portfolio weights
depend on the distribution of one-period returns (myopic
behavior).
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Summary

Backward, stochastic dynamic program allows one to solve for
optimal multi-period consumption and portfolio choices.

With log utility and no labor income, optimal consumption is
a fixed proportion of wealth.

In the same setting, optimal portfolio choices only depend on
the current period’s distribution of returns.

These last two results do not hold, in general, with other
utility/wealth specifications.
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