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Introduction

We now consider a consumption-savings decision along with
the previous portfolio choice decision.

These decisions imply a stochastic discount factor (SDF)
based on marginal utilities of consumption at di¤erent dates.

This SDF can value all traded assets and can bound assets�
expected returns and volatilities.

The SDF can also be derived by assuming market
completeness and no arbitrage.

We can modify the SDF to value assets using risk-neutral
probabilities.
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Consumption and Porftolio Choices

Let W0 and C0 be an individual�s initial date 0 wealth and
consumption, respectively. At date 1, the individual consumes
all of his wealth C1.

The individual�s utility function is:

U (C0) + �E
h
U
�eC1�i (1)

where � = 1
1+� is a subjective discount factor. A rate of time

preference � > 0 re�ects impatience for consuming early.

There are n assets where Pi is the date 0 price per share and
Xi is the date 1 random payo¤ of asset i , i = 1; :::; n. Hence
Ri � Xi=Pi is asset i�s random return.
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Consumption and Porftolio Choices cont�d

The individual receives labor income of y0 at date 0 and
random labor income of y1 at date 1.

Let !i be the proportion of date 0 savings invested in asset i .
Then the individual�s intertemporal budget constraint is

C1 = y1 + (W0 + y0 � C0)
Pn
i=1 !iRi (2)

where (W0 + y0 � C0) is date 0 savings. The individual�s
maximization problem is

max
C0;f!ig

U (C0) + �E [U (C1)] (3)

subject to
Pn
i=1 !i = 1. Substituting in (2), the �rst-order

conditions wrt C0 and !i , i = 1; :::; n are
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Consumption and Porftolio Choices cont�d

U 0 (C0)� �E
�
U 0 (C1)

Pn
i=1 !iRi

�
= 0 (4)

�E
�
U 0 (C1)Ri

�
� � = 0, i = 1; :::; n (5)

where � � �0= (W0 + y0 � C0) and �0 is the Lagrange multiplier
for the constraint

Pn
i=1 !i = 1.

From (5), for any two assets i and j :

E
�
U 0 (C1)Ri

�
= E

�
U 0 (C1)Rj

�
(6)

Equation (6) implies that the investor�s optimal portfolio
choices are such that the expected marginal utility-weighted
returns of any two assets are equal.
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Consumption and Porftolio Choices cont�d

How do we interpret equation (6)? Note that when C1 is high,
U 0 (C1) is low due to the concavity of utility.

Thus, an asset that pays high returns when consumption is
high (low) will be weighted by a low (high) marginal utility
weight.

E [U 0 (C1)Ri ] = E [U 0 (C1)Rj ] implies diversi�cation. Why?

If the individual invests a lot in asset i , say !i = 1 and
!j = 0, j 6= i , then C1 = y1 + (W0 + y0 � C0)Ri .
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Consumption and Porftolio Choices cont�d

Thus, C1 and Ri will be highly positively correlated and

E
�
U 0 (C1)Ri

�
= E

�
U 0 (C1)

�
E [Ri ] + Cov

�
U 0 (C1) ;Ri

�
(7)

will be low due to Cov (U 0 (C1) ;Ri ) < 0 while E [U 0 (C1)Rj ]
for other assets will tend to be high, implying
E [U 0 (C1)Ri ] < E [U 0 (C1)Rj ].

Hence, to make E [U 0 (C1)Ri ] = E [U 0 (C1)Rj ], the individual
will re-allocate some savings from asset i to make C1 less
correlated with asset i and more correlated with the other
assets.
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Consumption and Porftolio Choices cont�d

To examine the optimal intertemporal allocation of resources,
substitute (5) into (4)

U 0 (C0) = �E
�
U 0 (C1)

Pn
i=1 !iRi

�
=
Pn
i=1 !i�E

�
U 0 (C1)Ri

�
=

Pn
i=1 !i� = � (8)

Then substituting � = U 0 (C0) into (5) gives

�E
�
U 0 (C1)Ri

�
= U 0 (C0) , i = 1; :::; n (9)

or, since Ri = Xi=Pi ,

PiU 0 (C0) = �E
�
U 0 (C1)Xi

�
, i = 1; :::; n (10)
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Consumption and Porftolio Choices cont�d

Equation (10) implies the individual invests in asset i until the
marginal utility of giving up Pi dollars at date 0 just equals
the expected marginal utility of receiving Xi at date 1:

Equation (10) for a risk-free asset that pays Rf (gross return)
is

U 0 (C0) = Rf �E
�
U 0 (C1)

�
(11)

With CRRA utility U (C ) = C=, for  < 1, equation (11) is

1
Rf
= �E

"�
C0
C1

�1�#
(12)

implying that when the interest rate is high, so is the expected
growth in consumption.

George Pennacchi University of Illinois

Consumption-Savings, State Pricing 9/ 46



4.1: Consumption 4.2: Pricing 4.3: Completeness 4.4: Summary

Consumption and Porftolio Choices cont�d

If there is only a risk-free asset and nonrandom labor income,
so that C1 is nonstochastic, equation (12) is

Rf =
1
�

�
C1
C0

�1�
(13)

Note that

@Rf
@ C1C0

=
1� 
�

�
C1
C0

��
(14)

= (1� ) RfC1
C0
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Intertemporal Elasticity

So that the intertemporal elasticity of substitution is

� � Rf
C1
C0

@ C1C0
@Rf

=
@ ln (C1=C0)
@ ln (Rf )

=
1

1�  (15)

Thus for CRRA utility, � is the reciprocal of the coe¢ cient of
relative risk aversion. When 0 <  < 1, � exceeds unity and a
higher interest rate raises second-period consumption more
than one-for-one.

Conversely, when  < 0, then � < 1 and a higher interest rate
raises second-period consumption less than one-for-one,
implying a decrease in initial savings.
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Intertemporal Elasticity cont�d

The individual�s response re�ects two e¤ects from an increase
in interest rates.

1 A substitution e¤ect raises the return from transforming
current consumption into future consumption, providing an
incentive to save more.

2 An income e¤ect from the higher return on a given amount of
savings makes the individual better o¤ and, ceteris paribus,
would raise consumption in both periods.

For � > 1, the substitution e¤ect outweighs the income e¤ect,
while the reverse occurs when � < 1. When � = 1, the
income and substitution e¤ects exactly o¤set each other.
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Equilibrium Asset Pricing Implications

The individual�s consumption - portfolio choice has asset
pricing implications. Rewrite equation (10):

Pi = E
�
�U 0 (C1)
U 0 (C0)

Xi

�
(16)

= E [m01Xi ]

where m01 � �U 0 (C1) =U 0 (C0) is the stochastic discount
factor or state price de�ator for valuing asset returns.
In states of nature where C1 is high (due to high portfolio
returns or high labor income), marginal utility, U 0 (C1), is low
and an asset�s payo¤s are not highly valued.
Conversely, in states where C1 is low, marginal utility is high
and an asset�s payo¤s are much desired.
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Stochastic Discount Factor

The SDF or �pricing kernel�may di¤er across investors due to
di¤erences in random labor income that causes the
distribution of C1, and hence �U 0 (C1) =U 0 (C0), to di¤er.

Nonetheless, E [m01Xi ] = E [�U 0 (C1)Xi=U 0 (C0)] is the same
for all investors who can trade in asset i since individuals
adjust their portfolios to hedge individual-speci�c risks, and
di¤erences in �U 0 (C1) =U 0 (C0) re�ect only risks uncorrelated
with asset returns.

Utility depends on real consumption, C1. If PNi and X
N
i are

the initial price and end-of-period payo¤ measured in currency
units (nominal terms), they need to be de�ated by a price
index to convert them to real quantities.
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Real Pricing Kernel

Let CPIt be the consumer price index at date t. Equation
(16) becomes

PNi
CPI0

= E
�
�U 0 (C1)
U 0 (C0)

XNi
CPI1

�
(17)

If we de�ne Its = CPIs=CPIt as 1 plus the in�ation rate
between dates t and s, equation (17) is

PNi = E
�
1
I01

�U 0 (C1)
U 0 (C0)

XNi

�
(18)

= E
h
M01XNi

i
where M01 � (�=I01)U 0 (C1) =U 0 (C0) is the SDF for nominal
returns, equal to the real pricing kernel, m01, discounted at
the (random) rate of in�ation between dates 0 and 1.

George Pennacchi University of Illinois

Consumption-Savings, State Pricing 15/ 46



4.1: Consumption 4.2: Pricing 4.3: Completeness 4.4: Summary

Risk Premia and Marginal Utility of Consumption

Equation (16) can be rewritten to shed light on an asset�s risk
premium. Divide each side of (16) by Pi :

1 = E [m01Ri ] (19)

= E [m01]E [Ri ] + Cov [m01;Ri ]

= E [m01]
�
E [Ri ] +

Cov [m01;Ri ]
E [m01]

�
Recall from (11) that for the case of a risk-free asset,
E [�U 0 (C1) =U 0 (C0)] = E [m01] = 1=Rf . Then (19) can be
rewritten

Rf = E [Ri ] +
Cov [m01;Ri ]
E [m01]

(20)

or

George Pennacchi University of Illinois

Consumption-Savings, State Pricing 16/ 46



4.1: Consumption 4.2: Pricing 4.3: Completeness 4.4: Summary

Risk Premia and Marginal Utility of Consumption cont�d

E [Ri ] = Rf �
Cov [m01;Ri ]
E [m01]

(21)

= Rf �
Cov [U 0 (C1) ;Ri ]
E [U 0 (C1)]

An asset that tends to pay high returns when consumption is
high (low) has Cov [U 0 (C1) ;Ri ] < 0 (Cov [U 0 (C1) ;Ri ]> 0)
and will have an expected return greater (less) than the
risk-free rate.

Investors are satis�ed with negative risk premia when assets
hedge against low consumption states of the world.
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Relationship to the CAPM

Suppose there is a portfolio with a random return of eRm that
is perfectly negatively correlated with the marginal utility of
date 1 consumption, U 0

�eC1�, so that it is also perfectly
negatively correlated with m01:

U 0(~C1) = �0 � � eRm ; �0 > 0; � > 0 (22)

Then this implies

Cov [U 0(C1); Rm ] = ��Cov [Rm ;Rm ] = ��Var [Rm ] (23)

and
Cov [U 0(C1); Ri ] = ��Cov [Rm ; Ri ] (24)
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Relationship to the CAPM cont�d

From (21), the risk premium on this portfolio is

E [Rm ] = Rf �
Cov [U 0(C1); Rm ]
E [U 0(C1)]

= Rf +
�Var [Rm ]
E [U 0(C1)]

(25)

Using (21) and (25) to substitute for E [U 0(C1)], and using
(24), we obtain

E [Rm ]� Rf
E [Ri ]� Rf

=
�Var [Rm ]

�Cov [Rm ; Ri ]
(26)

and rearranging:

E [Ri ]� Rf =
Cov [Rm ;Ri ]
Var [Rm ]

(E [Rm ]� Rf ) (27)
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Relationship to the CAPM cont�d

Equation (27) is the CAPM relation

E [Ri ] = Rf + � i (E [Rm ]� Rf ) (28)

Note that CAPM assumptions imply the market portfolio is
perfectly positively (negatively) correlated with consumption
(marginal utility of consumption).

1 There is no wage income, so end of period consumption
derives only from asset portfolio returns.

2 With a risk-free asset and normally distributed asset returns,
everyone holds the same risky asset (market) portfolio.

Hence, the only risk to C1 is the return on the market
portfolio.
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Bounds on Risk Premia

m01 � �U 0 (C1) =U 0 (C0) places a bound on the Sharpe ratio
of all assets. Rewrite equation (21) as

E [Ri ] = Rf � �m01;Ri
�m01�Ri
E [m01]

(29)

where �m01 , �Ri , and �m01;Ri are the standard deviation of the
discount factor, the standard deviation of the return on asset
i , and the correlation between the discount factor and the
return on asset i , respectively.

Rearranging (29) leads to

E [Ri ]� Rf
�Ri

= ��m01;Ri
�m01
E [m01]

(30)
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Hansen-Jagannathan Bounds

Since �1 � �m01;Ri � 1, we know that����E [Ri ]� Rf�Ri

���� � �m01
E [m01]

= �m01Rf (31)

Equation (31) was derived by Robert Shiller (1982) and
generalized by Hansen and Jagannathan (1991).

If there exists a portfolio of assets whose return is perfectly
negatively correlated with m01, then (31) holds with equality.
The CAPM implies such a situation, so that the slope of the
capital market line, Se � E [Rm ]�Rf

�Rm
, equals �m01Rf .
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Ex: Bounds with Power Utility

If U (C ) = C= so m01 � � (C1=C0)�1 = �e(�1) ln(C1=C0)
and C1=C0 is lognormal with parameters �c and �c , then

�m01
E [m01]

=

q
Var

�
e (�1) ln(C1=C0)

�
E
�
e (�1) ln(C1=C0)

�
=

q
E
�
e2(�1) ln(C1=C0)

�
� E

�
e (�1) ln(C1=C0)

�2
E
�
e (�1) ln(C1=C0)

�
=

q
E
�
e2(�1) ln(C1=C0)

�
=E
�
e (�1) ln(C1=C0)

�2 � 1
=

q
e2(�1)�c+2(�1)

2�2c =e2(�1)�c+(�1)
2�2c � 1 =

q
e (�1)

2�2c � 1
� � ( � 1)�c = (1 � )�c (32)

The fourth line evaluates expectations assuming C1 log-normality,

E (X ) = e�+
1
2 �

2
.The �fth line takes a two-term approximation of the series

ex = 1 + x + x2

2! +
x3

3! + :::, which is reasonable for small positive x . The (+)

solution is negative for  < 1.
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Ex: Bounds with Power Utility

Hence, with power utility and lognormal consumption:����E [Ri ]� Rf�Ri

���� � (1� )�c (33)

For the S&P500 over the last 75 years, E [Ri ]� Rf = 8:3%
and �Ri = :17, implying a Sharpe ratio of

E [Ri ]�Rf
�Ri

= 0:49.

U.S. per capita consumption data implies estimates of �c
between 0.01 and 0.0386.
Assuming (33) holds with equality for the S&P500,

 = 1�
�
E [Ri ]�Rf
�Ri

�
=�c is between -11.7 and -48.

Other empirical estimates of  are -1 to -5. The inconsistency
of theory and empirical evidence is what Mehra and Prescott
(1985) termed the equity premium puzzle.
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Ex. Bounds on Rf

Even if high risk aversion is accepted, it implies an
unreasonable value for the risk-free return, Rf . Note that

1
Rf

= E [m01] (34)

= �E
h
e(�1) ln(C1=C0)

i
= �e(�1)�c+

1
2 (�1)

2�2c

and therefore

ln (Rf ) = � ln (�) + (1� )�c �
1
2
(1� )2 �2c (35)

If we set � = 0:99, and �c = 0:018, the historical average real
growth of U.S. per capita consumption, then with  = �11
and �c = 0:036 we obtain:
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Ex. Bounds on Rf cont�d

ln (Rf ) = � ln (�) + (1� )�c �
1
2
(1� )2 �2c

= 0:01+ 0:216� 0:093 = 0:133 (36)

which is a real risk-free interest rate of 13.3 percent.

Since short-term real interest rates have averaged about 1
percent in the U.S., we end up with a risk-free rate puzzle:
the high  results in an unreasonable Rf .

So a SDF derived from the marginal utility of consumption
doesn�t �t the data. However, we can derive a SDF of the
form Pi = E0 [m01Xi ] using another approach.
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Complete Markets Assumptions

An alternative SDF derivation is based on the assumptions of
a complete market and the absence of arbitrage.

Suppose that an individual can freely trade in n assets and
assume that there is a �nite number, k, of end-of-period
states of nature, with state s having probability �s .

Let Xsi be the cash�ow returned by one share (unit) of asset i
in state s. Asset i�s cash�ows can be written as:

Xi =

264 X1i...
Xki

375 (37)
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Complete Markets Assumptions cont�d

Thus, the per-share cash�ows of the universe of all assets can
be represented by the k � n matrix

X =

264 X11 � � � X1n
...

. . .
...

Xk1 � � � Xkn

375 (38)

We will assume that n = k and that X is of full rank,
implying that the n assets span the k states of nature and the
market is complete.

An implication is that an individual can purchase amounts of
the k assets that return target levels of end-of-period wealth
in each of the states.
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Complete Markets Assumptions cont�d

To show this complete markets result, let W be an arbitrary
k � 1 vector of end-of-period levels of wealth:

W =

264 W1
...
Wk

375 (39)

where Ws is the level of wealth in state s:

To obtain W , at the initial date the individual purchases
shares in the k assets. Let the vector N = [N1 : : :Nk ]0 be the
number of shares purchased of each of the k assets. Hence, N
must satisfy

XN =W (40)
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Complete Markets Assumptions cont�d

Since X is nonsingular, its inverse exists so that

N = X�1W (41)

is the unique solution.

Denoting P = [P1 : : : Pk ]0 as the k � 1 vector of
beginning-of-period, per-share prices of the k assets, then the
initial wealth required to produce the target level of wealth
given in (39) is P 0N.

The absence of arbitrage implies that the price of a new,
redundant security or contingent claim that pays W is
determined from the prices of the original k securities, and
this claim�s price must be P 0N.
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Arbitrage and State Prices

Consider the case of a primitive, elementary, or Arrow-Debreu
security which has a payo¤ of 1 in state s and 0 in all other
states:

es =

266666666664

W1
...

Ws�1
Ws

Ws+1
...
Wk

377777777775
=

266666666664

0
...
0
1
0
...
0

377777777775
(42)
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Arbitrage and State Prices

Then ps , the price of elementary security s, is

ps = P 0X�1es , s = 1; :::; k (43)

so a unique set of state prices exists in a complete market.

These elementary state prices should each be positive, since
wealth received in any state will have positive value when
individuals are nonsatiated. Hence (43) and ps > 0 8s restrict
the payo¤s, X , and the prices, P, of the original k securities.

Note that the portfolio composed of the sum of all elementary
securities gives a cash�ow of 1 unit with certainty and
determines the risk-free return, Rf :
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Arbitrage and State Prices cont�d

kX
s=1

ps =
1
Rf

(44)

For a general multicash�ow asset, a, whose cash�ow in state s
is Xsa, absence of arbitrage ensures its price, Pa, is

Pa =
kX
s=1

ps Xsa (45)

Consider the connection to state probabilities, �s , by de�ning
ms � ps=�s . Since ps > 0 8s, then ms > 0 8s when �s > 0.
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Arbitrage and State Prices cont�d

Then equation (45) can be written as

Pa =
Pk
s=1 �s

ps
�s
Xsa (46)

=
Pk
s=1 �sms Xsa

= E [mXa]

where m denotes a stochastic discount factor whose expected
value is E [m] =

Pk
s=1 �sms =

Pk
s=1 ps = 1=Rf , and Xa is

the random cash�ow of the multicash�ow asset a.

In terms of the consumption-based model,
ms = �U 0 (C1s ) =U 0 (C0) where C1s is consumption at date 1
in state s, ps is greater when C1s is low.
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Risk-Neutral Probabilities

De�ne b�s � psRf . Then
Pa =

Pk
s=1 ps Xsa (47)

=
1
Rf

Pk
s=1 psRf Xsa

=
1
Rf

Pk
s=1 b�s Xsa

Now b�s ; s = 1; :::; k, have the characteristics of probabilities
because they are positive, b�s = ps=Pk

s=1 ps > 0, and they
sum to 1,

Pk
s=1 b�s = Rf Pk

s=1 ps = Rf =Rf = 1.
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Risk-Neutral Probabilities cont�d

Using this insight, equation (47) can be written

Pa =
1
Rf

Pk
s=1 b�s Xsa

=
1
Rf
bE [Xa] (48)

where bE [�] denotes the expectation operator using the
�pseudo�probabilities b�s rather than the true probabilities �s .
Since the expectation in (48) is discounted by the risk-free
return, we can recognize bE [Xa] as the certainty equivalent
expectation of the cash�ow Xa.
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Risk-Neutral Probabilities cont�d

Since ms � ps=�s and Rf = 1=E [m], b�s can be written as
b�s = Rf ps = Rfms�s

=
ms
E [m]

�s (49)

In states where the SDF ms is greater than its average, E [m],
the pseudo probability exceeds the true probability.

Note if ms = 1
Rf
= E [m] then Pa = E [mXa] = E [Xa] =Rf so

the price equals the expected payo¤ discounted at the
risk-free rate, as if investors were risk-neutral.
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Risk-Neutral Probabilities cont�d

Hence, b�s is referred to as the risk-neutral probability.bE [�], also often denoted as EQ [�], is referred to as the
risk-neutral expectations operator.

In comparison, the true probabilities, �s , are frequently called
the physical, or statistical, probabilities.
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Two-State Example

Suppose k = 2 with state 1 being an economic expansion and
state 2 being an economic contraction, and �1 = �2 = 1

2 .

A default-free bond pays 1 in both states, but a default-risky
bond pays 1 in state 1 and 1

2 in state 2. Thus

X =
�
1 1
1 1

2

�
(50)

The price of the default-free bond is 1
Rf
= 1

1+rf
= 1, implying

rf = 0, and the price of the default-risky bond is 0:7, so that

P =
�
1
0:7

�
(51)
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Example: State Price Valuation

The elementary security prices are

p1 = P 0X�1e1 =
�
1 0:7

� � �1 2
2 �2

� �
1
0

�
= 0:4

p2 = P 0X�1e2 =
�
1 0:7

� � �1 2
2 �2

� �
0
1

�
= 0:6

If Stock a�s cash�ows are 130 in state 1 and 80 in state 2:

Pa =
P2
s=1 ps Xsa = (52)

= 0:4� 130+ 0:6� 80 = 52+ 48 = 100

so that the stock�s expected return is
E
heRai = E heXai =Pa = � 12 � 130+ 1

2 � 80
�
=100 = 1:05.
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Example: SDF Valuation

Now m1 =
p1
�1
= 0:4

1
2
= 0:8 and m2 =

p2
�2
= 0:6

1
2
= 1:2.

Therefore, using the SDF valuation of Stock a leads to

Pa = E [mXa]

=
P2
s=1 �sms Xsa

=
1
2
� 0:8� 130+ 1

2
� 1:2� 80

= 52+ 48 = 100
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Example: Risk-Neutral Valuation

Finally, note that b�1 � p1Rf = 0:4� 1 andb�2 � p2Rf = 0:6� 1.
Therefore, using risk-neutral valuation of Stock a leads to

Pa =
1
Rf
bE [Xa] (53)

=
1
Rf

P2
s=1 b�s Xsa

=
1
1
(0:4� 130+ 0:6� 80) = 100

So all three methods lead to the same valuation because they
are mathematically equivalent.
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State Pricing Extensions

This complete markets pricing, also known as State
Preference Theory, can be generalized to an in�nite number of
states and elementary securities.

Suppose states are indexed by all possible points on the real
line between 0 and 1; that is, the state s 2 (0; 1).

Also let p(s) be the price (density) of a primitive security that
pays 1 unit in state s, 0 otherwise.
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State Pricing Extensions cont�d

Further, de�ne Xa(s) as the cash�ow paid by security a in
state s.

Then, analogous to (44),Z 1

0
p(s) ds =

1
Rf

(54)

and the price of security a is

Pa =
Z 1

0
p(s)Xa(s) ds (55)
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State Pricing Extensions cont�d

In Time State Preference Theory, assets pay cash�ows at
di¤erent dates in the future and markets are complete.

For example, an asset may pay cash�ows at both date 1 and
date 2 in the future: let s1 be a state at date 1 and let s2 be a
state at date 2. States at date 2 can depend on which states
were reached at date 1.

Suppose there are two events at each date, economic
recession (r) or economic expansion (boom) (b). Then de�ne
s1 2 fr1; b1g and s2 2 fr1r2; r1b2; b1r2; b1b2g.
By assigning suitable probabilities and primitive security state
prices for assets that pay cash�ows of 1 unit in each of these
six states, we can sum (or integrate) over both time and
states at a given date to obtain prices of complex securities.
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Summary

An optimal portfolio is one where assets�expected marginal
utility-weighted returns are equalized, and the individual�s
optimal savings trades o¤ expected marginal utility of current
and future consumption.

Assets can be priced using a SDF that is the marginal rate of
substitution between current and future consumption.

A SDF can also be derived based on assumptions of market
completeness and no arbitrage.

A risk-neutral pricing formula transforms physical probabilities
to account for risk.
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