Consumption-Savings Decisions and State Pricing

George Pennacchi

University of lllinois

George Pennacchi University of lllinois

Consumption-Savings, State Pricing 1/ 46



4.1: Consumption

Introduction

@ We now consider a consumption-savings decision along with
the previous portfolio choice decision.

@ These decisions imply a stochastic discount factor (SDF)
based on marginal utilities of consumption at different dates.

@ This SDF can value all traded assets and can bound assets’
expected returns and volatilities.

@ The SDF can also be derived by assuming market
completeness and no arbitrage.

@ We can modify the SDF to value assets using risk-neutral
probabilities.
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4.1: Consumption

Consumption and Porftolio Choices

o Let Wy and (j be an individual's initial date 0 wealth and
consumption, respectively. At date 1, the individual consumes
all of his wealth G.

@ The individual's utility function is:
U(Go) + 0 [U (El)] (1)

where § = ﬁ is a subjective discount factor. A rate of time
preference p > 0 reflects impatience for consuming early.

@ There are n assets where P; is the date O price per share and
X; is the date 1 random payoff of asset i, i =1, ..., n. Hence
R; = X;/P; is asset i's random return.
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4.1: Consumption

Consumption and Porftolio Choices cont'd

@ The individual receives labor income of y; at date 0 and
random labor income of y; at date 1.

@ Let w; be the proportion of date 0 savings invested in asset i.
Then the individual's intertemporal budget constraint is

G=yi+Wo+y—G)>XwRi (2)

where (Wy + yo — Go) is date 0 savings. The individual's
maximization problem is

max U () + 0E [U (G)] (3)

Co,{wi

subject to > 7 ; w; = 1. Substituting in (2), the first-order
conditions wrt Cy and w;, i =1,...,n are
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4.1: Consumption

Consumption and Porftolio Choices cont'd

v (Go) —0E [U,(Cl) 27:1 w,-R,-] =0 (4)

SE[U(G)R]—X=0, i=1,..,n (5)

where A = )/ (Wo + yo — Go) and X is the Lagrange multiplier
for the constraint Y 7, w; = 1.

e From (5), for any two assets i/ and j:
E [U’(Cl) R,-] =E [U'(Cl) Rj] (6)

e Equation (6) implies that the investor’'s optimal portfolio
choices are such that the expected marginal utility-weighted
returns of any two assets are equal.
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4.1: Consumption

Consumption and Porftolio Choices cont'd

@ How do we interpret equation (6)7 Note that when C; is high,
U’ (Gy) is low due to the concavity of utility.

@ Thus, an asset that pays high returns when consumption is
high (fow) will be weighted by a low (high) marginal utility
weight.

o E[U (Ci)Ri] = E[U' (G) R;] implies diversification. Why?

o If the individual invests a lot in asset /, say w; = 1 and
wj=0,j#i then GG =y + (W +y — G)R:
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4.1: Consumption

Consumption and Porftolio Choices cont'd

@ Thus, G and R; will be highly positively correlated and
E [Ul (Cl) R,‘] =E [U,(Cl)] E[R,] + Cov (U,(Cl) s R,‘) (7)

will be low due to Cov (U’ (G1), R;) < 0 while E[U' (C1) Rj]
for other assets will tend to be high, implying
E[U(G)R] < E[U (G)R].

@ Hence, to make E [U' (G) R] = E[U'(G) R;], the individual
will re-allocate some savings from asset i to make (; less
correlated with asset i and more correlated with the other
assets.
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4.1: Consumption

Consumption and Porftolio Choices cont'd

@ To examine the optimal intertemporal allocation of resources,
substitute (5) into (4)

U/(Co) = (SE [U,(C1)27:1 w,-R,-] = er":l w,-6E [U’(Cl) R,']
= i wid=2A (8)

@ Then substituting A = U’ (() into (5) gives
0E [U,(Cl) R,'] = U/(Co), i:].,...,n (9)
or, since R; = X;/P;,

PU (G) =0E[U (G)X]., i=1,..n (10)
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4.1: Consumption

Consumption and Porftolio Choices cont'd

e Equation (10) implies the individual invests in asset i until the
marginal utility of giving up P; dollars at date 0 just equals
the expected marginal utility of receiving X; at date 1.

e Equation (10) for a risk-free asset that pays R¢ (gross return)

is

U (Go) = ReOE [U' ()] (11)

e With CRRA utility U(C) = C7/~, for v < 1, equation (11) is
1 G\

— —SsE|l= 12

= (@) g

implying that when the interest rate is high, so is the expected
growth in consumption.
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4.1: Consumption

Consumption and Porftolio Choices cont'd

o If there is only a risk-free asset and nonrandom labor income,
so that (i is nonstochastic, equation (12) is

1/G\'7
R == (= 1
f 5(C0) (13)
@ Note that
ORr  1-v (G
Q) ”
0
R
= 1-M¢g
Co
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4.1: Consumption

Intertemporal Elasticity

@ So that the intertemporal elasticity of substitution is

Rfa%_aM(Cl/Co)_ 1

‘TGOR, T om(R) 19

(15)

@ Thus for CRRA utility, € is the reciprocal of the coefficient of
relative risk aversion. When 0 < v < 1, € exceeds unity and a

higher interest rate raises second-period consumption more
than one-for-one.

o Conversely, when v < 0, then € < 1 and a higher interest rate
raises second-period consumption less than one-for-one,
implying a decrease in initial savings.

George Pennacchi University of lllinois

Consumption-Savings, State Pricing 11/ 46



4.1: Consumption

Intertemporal Elasticity cont'd

@ The individual's response reflects two effects from an increase
in interest rates.

@ A substitution effect raises the return from transforming
current consumption into future consumption, providing an
incentive to save more.

@ An income effect from the higher return on a given amount of
savings makes the individual better off and, ceteris paribus,
would raise consumption in both periods.

@ For € > 1, the substitution effect outweighs the income effect,
while the reverse occurs when € < 1. When € = 1, the
income and substitution effects exactly offset each other.
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4.2: Pricing

Equilibrium Asset Pricing Implications

@ The individual's consumption - portfolio choice has asset
pricing implications. Rewrite equation (10):
U (Gy)
P = E|———=X; 16
[ U (G) (16)
= E [m01X,']

where mg; = U’ (Gy) /U’ (Gy) is the stochastic discount
factor or state price deflator for valuing asset returns.

@ In states of nature where (; is high (due to high portfolio
returns or high labor income), marginal utility, U’ ((), is low
and an asset’s payoffs are not highly valued.

@ Conversely, in states where (; is low, marginal utility is high
and an asset’s payoffs are much desired.
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4.2: Pricing

Stochastic Discount Factor

@ The SDF or "pricing kernel" may differ across investors due to
differences in random labor income that causes the
distribution of Ci, and hence 60U’ (C;) /U’ (), to differ.

@ Nonetheless, E [mg1Xi] = E[0U' (C1) Xi/U' (Gy)] is the same
for all investors who can trade in asset / since individuals
adjust their portfolios to hedge individual-specific risks, and
differences in 60U’ (Cy) /U (o) reflect only risks uncorrelated
with asset returns.

@ Utility depends on real consumption, (3. If P,-N and X,-N are
the initial price and end-of-period payoff measured in currency
units (nominal terms), they need to be deflated by a price
index to convert them to real quantities.
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4.2: Pricing

Real Pricing Kernel

@ Let CPI; be the consumer price index at date t. Equation
(16) becomes

PN /4 X-N
CPly U (G) CPL
o If we define I;s = CPls/CPl; as 1 plus the inflation rate
between dates t and s, equation (17) is
16U (G) ]
pN [X,-N 18
1 U (G) (18)
- E [me,."’]

where Mo = (6/101) U' (G1) /U () is the SDF for nominal
returns, equal to the real pricing kernel, mgy, discounted at
the (random) rate of inflation between dates 0 and 1.
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4.2: Pricing

Risk Premia and Marginal Utility of Consumption

e Equation (16) can be rewritten to shed light on an asset’s risk
premium. Divide each side of (16) by P;:

1 = E[moR] (19)
E [m01] E [R,] + Cov [m01, R,’]

— Elmo] (E (R + Covlmor, Ri] R’])

E [m01]

@ Recall from (11) that for the case of a risk-free asset,
E [(5Ul (Cl) /Ul (Co)] = E[m01] = ]_/Rf. Then (19) can be

rewritten
COV [m01, R,‘]

Rs = E[Ri] + E [mo1]

(20)

or
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4.2: Pricing

Risk Premia and Marginal Utility of Consumption cont'd

E[R] = Rf—w (21)
. R_COV[U’(Cl),R,']
T EU(Q)

@ An asset that tends to pay high returns when consumption is
high (low) has Cov [U' (C1),R;] <0 (Cov[U' (C1),R]]> 0)
and will have an expected return greater (/ess) than the
risk-free rate.

@ Investors are satisfied with negative risk premia when assets
hedge against low consumption states of the world.
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4.2: Pricing

Relationship to the CAPM

@ Suppose there is a portfolio with a random return of km that
is perfectly negatively correlated with the marginal utility of

date 1 consumption, U’ (Z}) so that it is also perfectly

negatively correlated with mygs:
U'(C'l) = /<;0—14~Rm, ko >0, k>0 (22)
@ Then this implies
Cov[U'(C1), Ryn] = —k Cov[Rm, Rn] = — K Var[Rn] (23)

and
Cov[U'(C1), R] = —k Cov[Rm, Ri] (24)

George Pennacchi University of lllinois

Consumption-Savings, State Pricing 18/ 46



4.2: Pricing

Relationship to the CAPM cont'd

e From (21), the risk premium on this portfolio is

Cov[U'(C1), Rm] Kk Var[Rp]
UG - T EU(G)

@ Using (21) and (25) to substitute for E[U’((1)], and using
(24), we obtain

E[Rm] = Rr — (25)

E[Rm] — Rr & Var[Rn]
E[R,] — Rf N HCOV[Rm, R,‘]

(26)

and rearranging:

COV[Rm7 R,]

BRI =R = =Rl

(E[Rm] = Rr) (27)
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4.2: Pricing

Relationship to the CAPM cont'd

e Equation (27) is the CAPM relation
E[R] = Re + B; (E[Rm] — R¥) (28)

@ Note that CAPM assumptions imply the market portfolio is
perfectly positively (negatively) correlated with consumption
(marginal utility of consumption).

@ There is no wage income, so end of period consumption
derives only from asset portfolio returns.

@ With a risk-free asset and normally distributed asset returns,
everyone holds the same risky asset (market) portfolio.

@ Hence, the only risk to C; is the return on the market
portfolio.
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4.2: Pricing

Bounds on Risk Premia

e mo1 = d0U' (C1) /U () places a bound on the Sharpe ratio
of all assets. Rewrite equation (21) as

Omp OR;
E[R]=Rr—0p JQELY AT 29

[ ’] mo1,R; E[mol] ( )
where 0, Og;, and p,, . g are the standard deviation of the
discount factor, the standard deviation of the return on asset
i, and the correlation between the discount factor and the
return on asset /, respectively.

@ Rearranging (29) leads to

L. (30)

E [R,‘] — Ry _
mo1,R; E[m01]

OR.

i
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4.2: Pricing

Hansen-Jagannathan Bounds

@ Since —1 < pp, g <1, we know that

0 mo;
=0m R 31
= E[moi] O moy INf (31)

E[R] - Ry
OR.

!

e Equation (31) was derived by Robert Shiller (1982) and
generalized by Hansen and Jagannathan (1991).

o If there exists a portfolio of assets whose return is perfectly
negatively correlated with mg1, then (31) holds with equality.
The CAPM implies such a situation, so that the slope of the

E[Rm]—R¢

=", equals oy Rf.

capital market line, S, =
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4.2: Pricing

Ex: Bounds with Power Utility

o If U(C)=C"/ysomy=0(Ct/C) = delr—1In(G/Co)
and (1 /(C is lognormal with parameters 1. and o, then
_— \/ Var [e0=Dn(G/G)]
Elma]  E [e0-DNG/G)]
\/E 2-D)In(C1/ Q)] — E [elr=1)In(C1/C0))?
- E [eG-DI(C/G)]

VE [20-1(@/C)] JE [eb-1n(@/C)]? — 1

V20201202 20Dt -120E 1 = \felr-12et 1
t(y—1)oc=(1—7)oc (32)

Q

The fourth line evaluates expectations assuming C; log-normality,
1.2
E(X) = e#1329" The fifth line takes a two-term approximation of the series
2 3
e =1+x+ % + %5 + ..., which is reasonable for small positive x. The (+)

solution is negative for v < 1.
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4.2: Pricing

Ex: Bounds with Power Utility

@ Hence, with power utility and lognormal consumption:
E[R]— Rf

OR:

i

@ For the S&P500 over the last 75 years, E [R]] — Rf = 8.3%
and og, = .17, implying a Sharpe ratio of %R_Rf = 0.49.

i

<(I-7)oc (33)

@ U.S. per capita consumption data implies estimates of o
between 0.01 and 0.0386.

@ Assuming (33) holds with equality for the S&P500,
y=1- (m) /oc is between -11.7 and -48.

@ Other empirical estimates of y are -1 to -5. The inconsistency
of theory and empirical evidence is what Mehra and Prescott
(1985) termed the equity premium puzzle.
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4.2: Pricing

Ex. Bounds on R¢

@ Even if high risk aversion is accepted, it implies an
unreasonable value for the risk-free return, Rr. Note that

1

Ff == E[m01] (34)

— §E |e(r=1)In(Gi/Go)
—  §elrDuctz(v-1)°0?
and therefore
In(Re) = — In(8) + (1 — 7) o % (1202 (35)

o If we set 6 =0.99, and . = 0.018, the historical average real
growth of U.S. per capita consumption, then with v = —11
and o, = 0.036 we obtain:
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4.2: Pricing

Ex. Bounds on Rf cont'd

1
n(Re) = —In(@)+ (1= pn—5(1-9 702
— 0.01+0.216 — 0.093 = 0.133 (36)

which is a real risk-free interest rate of 13.3 percent.

@ Since short-term real interest rates have averaged about 1
percent in the U.S., we end up with a risk-free rate puzzle:
the high ~ results in an unreasonable Ry.

@ So a SDF derived from the marginal utility of consumption

doesn't fit the data. However, we can derive a SDF of the
form P; = Ey[mo1X;] using another approach.
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4.3: Completeness

Complete Markets Assumptions

@ An alternative SDF derivation is based on the assumptions of
a complete market and the absence of arbitrage.

@ Suppose that an individual can freely trade in n assets and
assume that there is a finite number, k, of end-of-period
states of nature, with state s having probability .

@ Let X;; be the cashflow returned by one share (unit) of asset /
in state s. Asset i's cashflows can be written as:
Xii
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4.3: Completeness

Complete Markets Assumptions cont’'d

@ Thus, the per-share cashflows of the universe of all assets can
be represented by the k X n matrix

X1 - Xin
x—| (38)
Xer o Xun

@ We will assume that n = k and that X is of full rank,
implying that the n assets span the k states of nature and the
market is complete.

@ An implication is that an individual can purchase amounts of
the k assets that return target levels of end-of-period wealth
in each of the states.
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4.3: Completeness

Complete Markets Assumptions cont’'d

@ To show this complete markets result, let W be an arbitrary
k x 1 vector of end-of-period levels of wealth:

Wi
W= : (39)
Wi
where W is the level of wealth in state s.
@ To obtain W, at the initial date the individual purchases
shares in the k assets. Let the vector N = [N ... Ni]’ be the

number of shares purchased of each of the k assets. Hence, N
must satisfy

XN = W (40)
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4.3: Completeness

Complete Markets Assumptions cont’'d

@ Since X is nonsingular, its inverse exists so that
N=X"1w (41)

is the unique solution.

@ Denoting P = [P; ... Pi]’ as the k x 1 vector of
beginning-of-period, per-share prices of the k assets, then the
initial wealth required to produce the target level of wealth
given in (39) is P'N.

@ The absence of arbitrage implies that the price of a new,
redundant security or contingent claim that pays W is
determined from the prices of the original k securities, and
this claim’s price must be P'N.
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4.3: Completeness

Arbitrage and State Prices

o Consider the case of a primitive, elementary, or Arrow-Debreu
security which has a payoff of 1 in state s and 0 in all other

states: ) } o
Wi 0
Wi_1 0
e = We | =11 (42)
Ws+l 0
[ Wk | L0
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4.3: Completeness

Arbitrage and State Prices

@ Then ps, the price of elementary security s, is
ps =P X les, s=1,...k (43)

so a unique set of state prices exists in a complete market.

@ These elementary state prices should each be positive, since
wealth received in any state will have positive value when
individuals are nonsatiated. Hence (43) and ps > 0 Vs restrict
the payoffs, X, and the prices, P, of the original k securities.

@ Note that the portfolio composed of the sum of all elementary
securities gives a cashflow of 1 unit with certainty and
determines the risk-free return, Ry:

George Pennacchi University of lllinois

Consumption-Savings, State Pricing 32/ 46



4.3: Completeness

Arbitrage and State Prices cont'd

>ph-g (44)

@ For a general multicashflow asset, a, whose cashflow in state s
is Xsa, absence of arbitrage ensures its price, P,, is

P; = Z Ps Xsa (45)

s=1

e Consider the connection to state probabilities, s, by defining
ms = ps/7s. Since ps > 0 Vs, then ms > 0 Vs when 75 > 0.
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4.3: Completeness

Arbitrage and State Prices cont'd

@ Then equation (45) can be written as

P, = Sk, WS%XQ (46)

S

= le(zl Tsms Xsa
= E[mXj]

where m denotes a stochastic discount factor whose expected
value is E [m] = le(:l TsMs = Zle ps = 1/R¢, and X, is
the random cashflow of the multicashflow asset a.

@ In terms of the consumption-based model,
ms = 0U' (Cis) /U’ (Cp) where Gy is consumption at date 1
in state s, ps is greater when Cis is low.
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4.3: Completeness

Risk-Neutral Probabilities

@ Define s = psRr. Then

P, = Zé:l Ps Xsa (47)
1

= ﬁf Zkzl psRf Xsa

1 PN
= Ff 25:1 s Xsa
e Now 75, s = 1,..., k, have the characteristics of probabilities

because they are positive, s = ps/ le(:l ps > 0, and they
sumtol, Y & =R YK ps=Re/Rr = 1.
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4.3: Completeness

Risk-Neutral Probabilities cont'd

e Using this insight, equation (47) can be written

1 ~
P, = FZéZl s Xsa
f

1~
= EE [X:] (48)

where E [-] denotes the expectation operator using the
“pseudo” probabilities 75 rather than the true probabilities 7.

@ Since the expectation in (48) is discounted by the risk-free
return, we can recognize E [X,] as the certainty equivalent
expectation of the cashflow Xj.
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4.3: Completeness

Risk-Neutral Probabilities cont'd

@ Since ms; = ps/ms and R = 1/E [m], Ts can be written as

Ts = Reps = Remsms
e (49)
E[m]"

@ In states where the SDF ms is greater than its average, E [m],
the pseudo probability exceeds the true probability.

o Note if ms = 4 = E [m] then P, = E [mX;] = E[X,] /Ry so
the price equals the expected payoff discounted at the
risk-free rate, as if investors were risk-neutral.
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4.3: Completeness

Risk-Neutral Probabilities cont'd

@ Hence, 75 is referred to as the risk-neutral probability.

o E [], also often denoted as E? [], is referred to as the
risk-neutral expectations operator.

@ In comparison, the true probabilities, 75, are frequently called
the physical, or statistical, probabilities.
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4.3: Completeness

Two-State Example

@ Suppose k = 2 with state 1 being an economic expansion and
state 2 being an economic contraction, and 7} = m = %

o A default-free bond pays 1 in both states, but a default-risky
bond pays 1 in state 1 and % in state 2. Thus

Gl e

@ The price of the default-free bond is R% = lef =1, implying
re = 0, and the price of the default-risky bond is 0.7, so that

p= [ o } (51)
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4.3: Completeness

Example: State Price Valuation

@ The elementary security prices are

1 -1 2 1
pp = PXle=]1 0.7][ ) _2][0]:0.4

1 -1 2 0
p = P'X egz[l 0.7][2 9 1 =0.6

@ If Stock a's cashflows are 130 in state 1 and 80 in state 2:

P, = Z§:1 Ps Xsa = (52)
= 04x130+0.6 x80=52+48=100

so that the stock's expected return is
E[R] = £ [X] /P, = (5 x 130+ } x 80) /100 = 1.05.
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4.3: Completeness

Example: SDF Valuation

oNowml—pi:054—08andm2—fé—¥:1.2.
2 2

@ Therefore, using the SDF valuation of Stock a leads to
P, = E[mX]]
= Zi:l Tsms Xsa
= %x0.8x130+%><1.2><80
= 52448 =100
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4.3: Completeness

Example: Risk-Neutral Valuation

@ Finally, note that 71 = pyRr = 0.4 x 1 and
31'\2 = png =0.6 x 1.

@ Therefore, using risk-neutral valuation of Stock a leads to
1 ~
P, = FE[Xa] (53)
f
1 ~
LSS AL RS
1
=7 (0.4 x 130 + 0.6 x 80) = 100

@ So all three methods lead to the same valuation because they
are mathematically equivalent.
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4.3: Completeness

State Pricing Extensions

@ This complete markets pricing, also known as State
Preference Theory, can be generalized to an infinite number of
states and elementary securities.

@ Suppose states are indexed by all possible points on the real
line between 0 and 1; that is, the state s € (0, 1).

@ Also let p(s) be the price (density) of a primitive security that
pays 1 unit in state s, 0 otherwise.
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4.3: Completeness

State Pricing Extensions cont'd

e Further, define X,(s) as the cashflow paid by security a in
state s.

@ Then, analogous to (44),
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4.3: Completeness

State Pricing Extensions cont'd

@ In Time State Preference Theory, assets pay cashflows at
different dates in the future and markets are complete.

@ For example, an asset may pay cashflows at both date 1 and
date 2 in the future: let s; be a state at date 1 and let s, be a
state at date 2. States at date 2 can depend on which states
were reached at date 1.

@ Suppose there are two events at each date, economic
recession (r) or economic expansion (boom) (b). Then define
S1 € {rl, bl} and S € {rlrg, r1b2, bll’g, blbg}.

@ By assigning suitable probabilities and primitive security state
prices for assets that pay cashflows of 1 unit in each of these
six states, we can sum (or integrate) over both time and
states at a given date to obtain prices of complex securities.
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4.4: Summary

Summary

@ An optimal portfolio is one where assets’ expected marginal
utility-weighted returns are equalized, and the individual's
optimal savings trades off expected marginal utility of current
and future consumption.

@ Assets can be priced using a SDF that is the marginal rate of
substitution between current and future consumption.

@ A SDF can also be derived based on assumptions of market
completeness and no arbitrage.

@ A risk-neutral pricing formula transforms physical probabilities
to account for risk.
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