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Introduction

How does one optimally choose among multiple risky assets?

Due to diversification, which depends on assets’return
covariances, the attractiveness of an asset when held in a
portfolio may differ from its appeal when it is the sole asset
held by an investor.

Hence, the variance and higher moments of a portfolio need
to be considered.

Portfolios that make the optimal tradeoff between portfolio
expected return and variance are mean-variance effi cient.
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Mean-Variance Utility

What assumptions are needed for investors to care about only
mean and variance (and not skewness, kurtosis...)?

Suppose a utility maximizer invests initial date 0 wealth, W0,
in a portfolio.

Let R̃p be the gross random return on this portfolio, so that
the individual’s end-of-period wealth is W̃ = W0R̃p .

For short-hand, write U(W̃ ) = U
(
W0R̃p

)
as just U(R̃p) since

given W0, W̃ is completely determined by R̃p .

Next express U(R̃p) by expanding it around the mean E [R̃p ]:
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Taylor Series Approximation of Utility

U(R̃p) = U
(
E [R̃p ]

)
+
(
R̃p − E [R̃p ]

)
U ′
(
E [R̃p ]

)
+1
2

(
R̃p − E [R̃p ]

)2
U ′′
(
E [R̃p ]

)
+ ...

+ 1
n!

(
R̃p − E [R̃p ]

)n
U(n)

(
E [R̃p ]

)
+ ... (1)

If the utility function is quadratic, (U(n) = 0, ∀ n ≥ 3), then
the individual’s expected utility is

E
[
U(R̃p)

]
= U

(
E [R̃p ]

)
+ 1

2E
[(
R̃p − E [R̃p ]

)2]
U ′′
(
E [R̃p ]

)
= U

(
E [R̃p ]

)
+ 1

2V [R̃p ]U ′′
(
E [R̃p ]

)
(2)
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Alternative Assumptions for Mean-Variance

Quadratic utility, such as U (W ) = aW − bW 2, is problematic
due to a “bliss point”at W = a

2b after which utility declines
in wealth.

Instead, let utility be a general increasing and concave
function but restrict the risky asset probability distribution.

Claim: If individual assets are multi-variate normally
distributed, utility of wealth depends only on portfolio mean
and variance.

Why? Note that the return on a portfolio is a weighted
average (sum) of the returns on the individual assets.

Then since sums of normals are normal, if the joint
distributions of individual assets are multivariate normal, then
the portfolio return is also normally distributed.
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Centered Normal Moments

Let a random variable, X , be distributed N
(
µ, σ2

)
. Its

moment generating function is:

m(t) = E (etX ) = exp
(
µt +

1
2
σ2t2

)
(3)

Centralized (multiply by exp(−µt))

cm(t) = exp
(
1
2
σ2t2

)
(4)

Then we have following moments
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Centered Normal Moments

E [R̃p − µ]1 =
d exp

( 1
2σ

2t2
)

dt

∣∣∣∣∣
t=0

= 0 (5)

E [R̃p − µ]2 =
d2 exp

( 1
2σ

2t2
)

dt2

∣∣∣∣∣
t=0

= σ2

E [R̃p − µ]3 =
d3 exp

( 1
2σ

2t2
)

dt3

∣∣∣∣∣
t=0

= 0

E [R̃p − µ]4 =
d4 exp

( 1
2σ

2t2
)

dt4

∣∣∣∣∣
t=0

= 3σ4

. . .
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Normal Distribution of Returns

So moments are either zero or a function of the variance:
E
[(
R̃p − E [R̃p ]

)n]
= 0 for n odd, and

E
[(
R̃p − E [R̃p ]

)n]
= n!

(n/2)!

(
1
2V [R̃p ]

)n/2
for n even.

Therefore, in this case the individual’s expected utility equals

E
[
U(R̃p)

]
= U

(
E [R̃p ]

)
+ 1

2V [R̃p ]U ′′
(
E [R̃p ]

)
+ 0 +

1

8

(
V [R̃p ]

)2
U ′′′′

(
E [R̃p ]

)
+0 + ...+

1

(n/2)!

(
1

2
V [R̃p ]

)n/2
U (n)

(
E [R̃p ]

)
+ ... (6)

which depends only on the mean and variance of the portfolio

return.
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Caveats

Is a multivariate normal distribution realistic for asset returns?

If individual assets and R̃p are normally distributed, the gross
return will be negative with positive probility because the
normal distribution ranges over the entire real line.

This is a problem since most assets have limited liability,
implying R̃p should be non-negative.

Later, in a continuous-time context, we can assume asset
returns are instantaneously normal, which allows them to be
log-normally distributed over finite intervals.
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Preference for Return Mean and Variance

Therefore, assume U is a general utility function and asset
returns are normally distributed. The portfolio return R̃p has
normal probability density function f (R; R̄p , σ2p), where we
define R̄p ≡ E [R̃p ] and σ2p ≡ V [R̃p ].
Expected utility can then be written as

E
[
U
(
R̃p
)]

=

∫ ∞
−∞

U(R)f (R; R̄p , σ2p)dR (7)

Consider an individual’s indifference curves. Define x̃
≡ R̃p−R̄p

σp
,

E
[
U
(
R̃p
)]

=

∫ ∞
−∞

U(R̄p + xσp)n(x)dx (8)

where n(x) ≡ f (x ; 0, 1). (x̃ is a standardized normal)

George Pennacchi University of Illinois

Mean-variance analysis 10/ 52



2.1: Assumptions 2.2: Indifference 2.3: Frontier 2.4: Rf 2.5: Hedging 2.6: Summary

Mean vs Variance cont’d

Taking the partial derivative with respect to R̄p :

∂E
[
U
(
R̃p
)]

∂R̄p
=

∫ ∞
−∞

U ′n(x)dx > 0 (9)

since U ′ is always greater than zero.

Taking the partial derivative of equation (8) with respect to
σ2p and using the chain rule:

∂E
[
U
(
R̃p
)]

∂σ2p
=

1
2σp

∂E
[
U
(
R̃p
)]

∂σp
=

1
2σp

∫ ∞
−∞

U ′xn(x)dx

(10)
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Risk and Utility

While U ′ is always positive, x ranges between −∞ and +∞.
Take the positive and negative pair +xi and −xi . Then
n(+xi ) = n(−xi ).
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Risk and Utility cont’d

Comparing the integrand of equation (10) for equal absolute
realizations of x , we can show

U ′(R̄p + xiσp)xin(xi ) + U ′(R̄p − xiσp)(−xi )n(−xi )
= U ′(R̄p + xiσp)xin(xi )− U ′(R̄p − xiσp)xin(xi )

= xin(xi )
[
U ′(R̄p + xiσp)− U ′(R̄p − xiσp)

]
< 0 (11)

because
U ′(R̄p + xiσp) < U ′(R̄p − xiσp) (12)

due to the assumed concavity of U.
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Risk and Utility cont’d

Thus, comparing U ′xin(xi ) for each positive and negative pair,
we conclude that

∂E
[
U
(
R̃p
)]

∂σ2p
=

1
2σp

∫ ∞
−∞

U ′xn(x)dx < 0 (13)

which is intuitive for risk-averse individuals.
An indifference curve is the combinations of

(
R̄p , σ2p

)
that

satisfy the equation E
[
U
(
R̃p
)]

= U , a constant. Higher U
denotes greater utility. Taking the derivative

dE
[
U
(
R̃p
)]

=
∂E
[
U
(
R̃p
)]

∂σ2p
dσ2p +

∂E
[
U
(
R̃p
)]

∂R̄p
dR̄p = 0

(14)
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Mean and Variance Indifference Curve

Rearranging the terms of dE
[
U
(
R̃p
)]

= 0, we obtain:

dR̄p
dσ2p

= −
∂E
[
U
(
R̃p
)]

∂σ2p
/
∂E
[
U
(
R̃p
)]

∂R̄p
> 0 (15)

since we showed
∂E [U(R̃p)]

∂σ2p
< 0 and

∂E [U(R̃p)]
∂R̄p

> 0.

Hence, each indifference curve is positively sloped in
(
R̄p , σ2p

)
space. They cannot intersect because since we showed that
utility is increasing in expected portfolio return for a given
level of portfolio standard deviation.
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Mean and Standard Deviation Indifference Curve

As an exercise, show that the indifference curve is upward
sloping and convex in

(
R̄p , σp

)
space:
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Tangency Portfolios

The individual’s optimal choice of portfolio mean and variance
is determined by the point where one of these indifference
curves is tangent to the set of means and standard deviations
for all feasible portfolios, what we might describe as the “risk
versus expected return investment opportunity set.”

This set represents all possible ways of combining various
individual assets to generate alternative combinations of
portfolio mean and variance (or standard deviation).

The set includes ineffi cient portfolios (those in the interior of
the opportunity set) as well as effi cient portfolios (those on
the “frontier”of the set).

How can one determine effi cient portfolios?
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Mean/Variance Optimization

Given the means and covariances of returns for n individual
assets, find the portfolio weights that minimize portfolio
variance for a given portfolio expected return (Merton, 1972).
Let R̄ = (R̄1 R̄2 ... R̄n)′ be an n × 1 vector of the assets’
expected returns, and let V be the n × n covariance matrix
whose i , j th element is σij .
V is assumed to be of full rank. (no redundant assets.)
Next, let ω = (ω1 ω2 ... ωn)′ be an n × 1 vector of portfolio
weights. Then the expected return on the portfolio is

R̄p = ω′R̄ =
∑n
i=1 ωi R̄i (16)

and the variance of the portfolio return is

σ2p = ω′Vω =
∑n
i=1
∑n
j=1 ωiωjσij (17)
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Mean/Variance Optimization cont’d

The constraint on portfolio weights is ω′e = 1 where e is
defined as an n × 1 vector of ones.
A frontier portfolio minimizes the portfolio’s variance subject
to the constraints that the portfolio’s expected return equals
Rp and the portfolio’s weights sum to one:

min
ω

1
2ω
′Vω + λ

[
Rp − ω′R̄

]
+ γ[1− ω′e] (18)

The first-order conditions with respect to ω, λ, and γ, are

Vω − λR̄ − γe = 0 (19)

Rp − ω′R̄ = 0 (20)

1− ω′e = 0 (21)
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Mean/Variance Optimization cont’d

Solving (19) for ω∗, the portfolio weights are

ω∗ = λV−1R̄ + γV−1e (22)

Pre-multiplying equation (22) by R̄ ′ and e ′ respectively:

Rp = R̄ ′ω∗ = λR̄ ′V−1R̄ + γR̄ ′V−1e (23)

1 = e ′ω∗ = λe ′V−1R̄ + γe ′V−1e (24)

Solving equations (23) and (24) for λ and γ:

λ =
δRp − α
ςδ − α2 (25)

γ =
ς − αRp
ςδ − α2 (26)
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Mean/Variance Optimization cont’d

Here α ≡ e ′V−1R̄, ς ≡ R̄ ′V−1R̄, and δ ≡ e ′V−1e are scalars.
The denominators ςδ − α2 are positive. Since V is positive
definite, so is V−1. Therefore, the quadratic form(
αR − ςe

)′
V−1

(
αR − ςe

)
= α2ς − 2α2ς + ς2δ = ς

(
ςδ − α2

)
is positive.

But since ς ≡ R ′V−1R is a positive quadratic form, then(
ςδ − α2

)
must also be positive.

Substituting for λ and γ in equation (22), we have

ω∗ =
δRp − α
ςδ − α2 V

−1R̄ +
ς − αRp
ςδ − α2 V

−1e (27)
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Mean/Variance Optimization cont’d

Collecting terms in Rp , the portfolio weights are:

ω∗ = a+ bRp (28)

where a ≡ ςV−1e − αV−1R̄
ςδ − α2 and b ≡ δV−1R̄ − αV−1e

ςδ − α2 .

Based on these weights, the minimized portfolio variance for
given Rp is

σ2p = ω∗′Vω∗ = (a+ bRp)′V (a+ bRp) (29)

=
δR

2
p − 2αRp + ς

ςδ − α2

=
1
δ

+
δ
(
Rp − α

δ

)2
ςδ − α2
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Mean/Variance Frontier

Equation (29) is a parabola in σ2p , Rp space with its minimum

at Rp = Rmv ≡ α
δ = R̄ ′V−1e

e ′V−1e and σ
2
mv ≡ 1

δ = 1
e ′V−1e .
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Mean/Variance Optimization cont’d

Substituting Rp = α
δ into equation (27) and multiplying by

δ
δ

shows that this minimum variance portfolio has weights
ωmv = 1

δV
−1e = V−1e/

(
e ′V−1e

)
.

An investor whose utility is increasing in expected portfolio
return and is decreasing in portfolio variance would never
choose a portfolio having Rp < Rmv .

Hence, the effi cient portfolio frontier is represented only by
the region Rp ≥ Rmv .
Next, let us plot the frontier in σp , Rp space by taking the
square root of both sides of equation (29):
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Asymptotes

σp =

√
1
δ

+
δ
(
Rp − α

δ

)2
ςδ − α2

which is a hyperbola in σp , Rp space. Differentiating, this
hyperbola’s slope can be written as

∂Rp
∂σp

=
ςδ − α2

δ
(
Rp − α

δ

)σp (30)

The hyperbola’s effi cient (ineffi cient) upper (lower) arc

asymptotes to the straight line Rp = Rmv +
√

ςδ−α2
δ σp

(Rp = Rmv −
√

ςδ−α2
δ σp).
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Effi cient Frontier
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Two Fund Separation

We now state and prove a fundamental result:

Theorem
Every portfolio on the mean-variance frontier can be replicated by
a combination of any two frontier portfolios; and an individual will
be indifferent between choosing among the n financial assets, or
choosing a combination of just two frontier portfolios.

The implication is that if a security market offered two mutual
or “exchange-traded” funds, each invested in a different
frontier portfolio, any mean-variance investor could replicate
his optimal portfolio by appropriately dividing his wealth
between only these two funds. (He may have to short one.)
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Two Fund Separation: Proof

Proof: Let R̄1p , R̄2p and R̄3p be the expected returns on three
frontier portfolios. Invest a proportion of wealth, x , in
portfolio 1 and the remainder, (1− x), in portfolio 2 such that:

R̄3p = xR̄1p + (1− x)R̄2p (31)

Recall that the weights of frontier portfolios 1 and 2 are
ω1 = a+ bR̄1p and ω2 = a+ bR̄2p , respectively. Hence, the
investment’s portfolio weights are

xω1 + (1− x)ω2 = x(a+ bR̄1p) + (1− x)(a+ bR̄2p)(32)

= a+ b(xR̄1p + (1− x)R̄2p)

= a+ bR̄3p = ω3

which shows that it is frontier portfolio 3.
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Zero Covariance Portfolios

Frontier portfolios have another property. Except for the
minimum variance portfolio, ωmv , for each frontier portfolio
there is another frontier portfolio with which its returns have
zero covariance:

ω1′Vω2 = (a+ bR1p)′V (a+ bR2p) (33)

=
1
δ

+
δ

ςδ − α2
(
R1p −

α

δ

)(
R2p −

α

δ

)
Equating this to zero and solving for R2p in terms of Rmv ≡ α

δ ,

R2p =
α

δ
− ςδ − α2

δ2
(
R1p − α

δ

) (34)

= Rmv −
ςδ − α2

δ2
(
R1p − Rmv

)
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Zero Covariance cont’d

Note that if
(
R1p − Rmv

)
> 0 so that frontier portfolio ω1 is

effi cient, then by (34) R2p < Rmv : frontier portfolio ω2 is
ineffi cient.

We can determine the relative locations of these zero
covariance portfolios by noting that in σp , Rp space, a line
tangent to the frontier at the point

(
σ1p ,R1p

)
is of the form

Rp = R0 +
∂Rp
∂σp

∣∣∣σp=σ1p
σp (35)

where ∂R p
∂σp

∣∣∣σp=σ1p
is the slope of the hyperbola at point(

σ1p ,R1p
)
and R0 is the tangent line’s intercept at σp = 0.
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Zero Covariance cont’d

Using (30) and (29), we can solve for R0 by evaluating (35)
at the point

(
σ1p ,R1p

)
:

R0 = R1p −
∂Rp
∂σp

∣∣∣σp=σ1p
σ1p = R1p −

ςδ − α2

δ
(
R1p − α

δ

)σ1pσ1p
= R1p −

ςδ − α2

δ
(
R1p − α

δ

) [1
δ

+
δ
(
R1p − α

δ

)2
ςδ − α2

]

=
α

δ
− ςδ − α2

δ2
(
R1p − α

δ

) (36)

= R2p

The intercept of the line tangent to ω1 is the expected return
of its zero-covariance counterpart, ω2 .
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Zero Covariance cont’d
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Effi cient Frontier with a Riskless Asset

Assume there is a riskless asset with return Rf (Tobin, 1958).
Now the constraint ω′e = 1 does not apply because 1− ω′e is
the portfolio proportion invested in the riskless asset. Note
that the portfolio’s expected return equals

R̄p = Rf + ω′(R̄ − Rf e) (37)

The variance of the return on the portfolio is still ω′Vω.
Thus, the individual’s optimization problem is changed to:

min
ω

1
2ω
′Vω + λ

{
Rp −

[
Rf + ω′(R̄ − Rf e)

]}
(38)

Similar to the previous derivation, the solution to the first
order conditions is

ω∗ = λV−1(R̄ − Rf e) (39)
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Effi cient Frontier with a Riskless Asset

Here λ ≡ R p−Rf
(R̄−Rf e)

′
V−1(R̄−Rf e)

=
R p−Rf

ς−2αRf +δR 2f
, and the variance

of the frontier portfolio in terms of ω∗ is

σ2p = ω∗′V ω∗ =
R p − Rf(

R̄ − Rf e
)′ V−1(R̄ − Rf e)

(R̄ − Rf e)′V−1V ×

R p − Rf(
R̄ − Rf e

)′ V−1(R̄ − Rf e)
V−1(R̄ − Rf e)

=
(R p − Rf )2(

R̄ − Rf e
)′ V−1(R̄ − Rf e)

=
(R p − Rf )2

ς − 2αRf + δR 2f
(40)

Taking the square root of (40) and rearranging:

Rp = Rf ±
(
ς − 2αRf + δR2f

) 1
2 σp (41)

which indicates that the frontier is now linear in σp , Rp space.
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Effi cient Frontier with a Riskless Asset
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Two Fund Separation: Rf < Rmv

When Rf 6= Rmv ≡ α
δ , an even stronger separation principle

obtains: any frontier portfolio can be replicated with one
portfolio that is located on the “risky asset only” frontier and
another portfolio that holds only the riskless asset.

Let us prove this result for the case Rf < Rmv . We assert that

the effi cient frontier line Rp = Rf +
(
ς − 2αRf + δR2f

) 1
2 σp

can be replicated by a portfolio consisting of only the riskless
asset and a portfolio on the risky-asset-only frontier that is
determined by a straight line tangent to this frontier whose
intercept is Rf .

If we show that the slope of this tangent is(
ς − 2αRf + δR2f

) 1
2 , the assertion is proved.
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Two Fund Separation: Rf < Rmv

Let RA and σA be the expected return and standard deviation
of return, respectively, of this tangency portfolio. Then the
results of (34) and (35) allow us to write the tangent’s slope
as

Slope ≡ RA − Rf
σA

=

[
α

δ
− ςδ − α2

δ2
(
Rf − α

δ

) − Rf
]
/σA

=

[
2αRf − ς − δR2f
δ
(
Rf − α

δ

) ]
/σA (42)

Furthermore, we can use (29) and (34) to write

σ2A =
1
δ

+
δ
(
RA − α

δ

)2
ςδ − α2
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Two Fund Separation: Rf < Rmv cont’d

We then substitute (34) where R1p = Rf for RA

σ2A =
1
δ

+
ςδ − α2

δ3
(
Rf − α

δ

)2
=

δR2f − 2αRf + ς

δ2
(
Rf − α

δ

)2 (43)

Substituting the square root of (43) into (42):

RA − Rf
σA

=

[
2αRf − ς − δR2f
δ
(
Rf − α

δ

) ]
−δ
(
Rf − α

δ

)(
δR2f − 2αRf + ς

) 1
2

(44)

=
(
δR2f − 2αRf + ς

) 1
2

which is the desired result.
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An Important Separation Result

This result implies that all investors choose to hold risky
assets in the same relative proportions given by the tangency
portfolio ωA. Investors differ only in the proportion of wealth
allocated to this portfolio versus the risk-free asset.
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Level of Risk-free Return

Rf < Rmv is required for asset market equilibrium. If

Rf > Rmv , the effi cient frontier

Rp = Rf +
(
ς − 2αRf + δR2f

) 1
2 σp is always above the

risky-asset-only frontier, implying the investor short-sells the
tangency portfolio on the ineffi cient risky asset frontier and
invests the proceeds in the risk-free asset.
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Level of Risk-free Return

If Rf = Rmv the portfolio frontier is given by the asymptotes
of the risky frontier. Setting Rf = Rmv in (39) and
premultiplying by e:

ω∗ =
Rp − Rf

ς − 2αRf + δR2f
V−1(R̄ − Rf e) (45)

e ′ω∗ = e ′V−1(R̄ − α

δ
e)

Rp − Rf
ς − 2αRf + δR2f

e ′ω∗ = (α− α

δ
δ)

Rp − Rf
ς − 2αRf + δR2f

= 0

which shows that total wealth is invested in the risk-free asset.
However, the investor also holds a risky, but zero net wealth,
position in risky assets by short-selling particular risky assets
to finance long positions in other risky assets.
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Example with Negative Exponential Utility

Given a specific utility function and normally distributed asset
returns, optimal portfolio weights can be derived directly by
maximizing expected utility:

U(W̃ ) = −e−bW̃ (46)

where b is the individual’s coeffi cient of absolute risk aversion.
Now define br ≡ bW0, which is the individual’s coeffi cient of
relative risk aversion at initial wealth W0. Equation (46) can
be rewritten:

U(W̃ ) = −e−br W̃ /W0 = −e−br R̃p (47)

where R̃p is the total return (one plus the rate of return) on
the portfolio.
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Example with Negative Exponential Utility cont’d

We still have n risky assets and Rf as before. Now recall the
properties of the lognormal distribution. If x̃ is a normally
distributed random variable, for example, x̃ ∼ N(µ, σ2), then
z̃ = e x̃ is lognormally distributed. The expected value of z̃ is

E [z̃ ] = eµ+ 1
2σ

2
(48)

From (47), we see that if R̃p = Rf + ω′(R̃ − Rf e) is normally

distributed, then U
(
W̃
)
is lognormally distributed. Using

equation (48), we have

E
[
U
(
W̃
)]

= −e−br [Rf +ω′(R̄−Rf e)]+ 1
2 b

2
r ω
′V ω (49)

The individual chooses portfolio weights to maximize expected
utility:
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Example with Negative Exponential Utility cont’d

max
ω
E
[
U
(
W̃
)]

= max
ω
− e−br [Rf +ω′(R̄−Rf e)]+ 1

2 b
2
r ω
′V ω (50)

Since expected utility is monotonic in its exponent, this
problem is equivalent to

max
ω

ω′(R̄ − Rf e)− 1
2brω

′Vω (51)

The n first-order conditions are

R̄ − Rf e − brVω = 0 (52)

Solving for ω, we obtain

ω∗ =
1
br
V−1(R̄ − Rf e) (53)
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Example with Negative Exponential Utility cont’d

Comparing (53) to (39), note that

1
br

= λ ≡ Rp − Rf(
R̄ − Rf e

)′ V−1(R̄ − Rf e)
(54)

so that the greater is br , the smaller is Rp and the proportion
of wealth invested in risky assets.

Multiplying both sides of (53) by W0, we see that the
absolute amount of wealth invested in the risky assets is

W0ω
∗ =

1
b
V−1(R̄ − Rf e) (55)

implying that with constant absolute risk aversion the amount
invested in the risky assets is independent of initial wealth.
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Cross-hedging (Anderson & Danthine, 1981)

Consider a one-period model of an individual required to trade
a commodity in the future and wants to hedge the risk using
futures contracts.

Assume that at date 0 she is committed to buy (sell) y > 0
(y < 0) units of a risky commodity at date 1 at the spot price
p1. As of date 0, y is deterministic, while p1 is stochastic.

There are n financial securities (futures contracts) where the
date 0 price of the i th financial security is psi0, and its risky
date 1 price is psi1.

Let si denote the amount of the i th security purchased at date
0, where si < 0 indicates a short position.
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Cross-hedging (Anderson & Danthine, 1981) cont’d

Define n × 1 quantity and price vectors s ≡ [s1 ... sn]′,
ps0 ≡ [ps10 ... p

s
n0]
′, and ps1 ≡ [ps11 ... p

s
n1]
′. Also define

ps ≡ ps1 − ps0 as the n × 1 vector of security price changes.
Thus, the date 1 profit from securities trading is ps ′s

Define the moments E [p1] = p̄1, Var [p1] = σ00, E [ps1] = p̄s1,
E [ps ] = p̄s , Cov [psi1, p

s
j1] = σij , Cov [p1, p

s
i1] = σ0i , and the

(n + 1)× (n + 1) covariance matrix of the spot commodity
and financial securities is

Σ =

[
σ00 Σ01
Σ′01 Σ11

]
(56)

where Σ11 is an n × n matrix whose i , j th element is σij , and
Σ01 is a 1× n vector whose i th element is σ0i .
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Cross-hedging (Anderson & Danthine, 1981) cont’d

The end-of-period profit (wealth) of the financial operator,
W , is

W = ps ′s − p1y (57)

Assuming constant absolute risk aversion (CARA) utility, the
problem is to choose s in order to maximize:

max
s
E [W ]− 1

2αVar [W ] (58)

Substituting in for the operator’s expected profit and variance:

max
s
p̄s ′s − p̄1y − 1

2α
[
y2σ00 + s ′Σ11s − 2yΣ01s

]
(59)

The first-order conditions are

p̄s − α
[
Σ11s − yΣ′01

]
= 0 (60)
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Cross-hedging (Anderson & Danthine, 1981) cont’d

Solving for s, the optimal financial security positions are

s =
1
α

Σ−111 p̄
s + yΣ−111 Σ′01 (61)

=
1
α

Σ−111 (ps1 − ps0) + yΣ−111 Σ′01

First consider y = 0. This can be viewed as a trader who has
no requirement to hedge.
If n = 1 and p̄s1 > p

s
0 (p̄

s
1 < p

s
0), the speculator buys (sells) the

security. The size of the position is adjusted by the volatility of
the security (Σ−111 = 1/σ11), and the level of risk aversion α.
For the general case of n > 1, expectations are not enough to
decide to buy/sell. All of the elements in Σ−111 need to be
considered to maximize diversification.
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Cross-hedging (Anderson & Danthine, 1981) cont’d

For the general case y 6= 0, the situation faced by a hedger,
the demand for financial securities is similar to that of a pure
speculator in that it also depends on price expectations.
In addition, there are hedging demands, call them sh :

sh ≡ yΣ−111 Σ′01 (62)

This is the solution to the variance-minimization problem, yet
in general expected returns matter for hedgers.
From (62), note that when n = 1 the pure hedging demand
per unit of the commodity purchased, sh/y , is

sh

y
=
Cov(p1, ps1)

Var(ps1)
(63)
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Cross-hedging (Anderson & Danthine, 1981) cont’d

For the general case, n > 1, the elements of the vector
Σ−111 Σ′01 equal the coeffi cients β1, ..., βn in the multiple
regression model:

∆p1 = β0 + β1∆p
s
1 + β2∆p

s
2 + ...+ βn∆psn + ε (64)

where ∆p1 ≡ p1 − p0, ∆psi ≡ psi1 − psi0, and ε is a mean-zero
error term.

An implication of (64) is that an operator might estimate the
hedge ratios, sh/y , by performing a statistical regression using
a historical time series of the n × 1 vector of security price
changes. In fact, this is a standard way that practitioners
calculate hedge ratios.
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Summary

A multivariate normal distribution of individual asset returns is
suffi cient for mean-variance optimization to be valid.

Two frontier portfolios are enough to span the entire
mean-variance effi cient frontier.

When a riskless asset exists, only one frontier portfolio
(tangency portfolio) and the riskless asset is required to span
the frontier.

Hedging can be expressed as an application of mean-variance
optimization.
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