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Introduction

Expected utility is the standard framework for modeling investor
choices. The following topics will be covered:

1 Analyze conditions on individual preferences that lead to an
expected utility function.

2 Consider the link between utility, risk aversion, and risk premia
for particular assets.

3 Examine how risk aversion affects an individual’s portfolio
choice between a risky and riskfree asset.
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Preferences when Returns are Uncertain

Economists typically analyze the price of a good using supply
and demand. We can do the same for assets.

The main distinction between assets is their future payoffs:
Risky assets have uncertain payoffs, so a theory of asset
demands must specify investor preferences over different,
uncertain payoffs.

Consider relevant criteria for ranking preferences. One
possible measure is the asset’s average payoff.
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Criterion: Expected Payoff

Suppose an asset offers a single random payoff at a particular
future date, and this payoff has a discrete distribution with n
possible outcomes (x1, ..., xn) and corresponding probabilities
(p1, ..., pn), where

∑n
i=1 pi = 1 and pi ≥ 0.

Then the expected value of the payoff (or, more simply, the
expected payoff) is x̄ ≡ E [x̃ ] =

∑n
i=1 pixi .

Is an asset’s expected value a suitable criterion for
determining an individual’s demand for the asset?

Consider how much Paul would pay Peter to play the
following coin flipping game.
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St. Petersburg Paradox, Nicholas Bernoulli, 1713

Peter continues to toss a coin until it lands “heads.”He
agrees to give Paul one ducat if he gets heads on the very first
throw, two ducats if he gets it on the second, four if on the
third, eight if on the fourth, and so on.

If the number of coin flips taken to first obtain heads is i , then
pi =

( 1
2

)i
and xi = 2i−1. Thus, Paul’s expected payoff equals

x̄ =
∑∞
i=1 pixi = 1

21+ 1
42+ 1

84+ 1
168+ ... (1)

= 1
2 (1+ 1

22+ 1
44+ 1

88+ ...

= 1
2 (1+ 1+ 1+ 1+ ... =∞
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St. Petersburg Paradox

What is the paradox?

Daniel Bernoulli (1738) explained it using expected utility.

His insight was that an individual’s utility from receiving a
payoff differed from the size of the payoff.

Instead of valuing an asset as x =
∑n
i=1 pixi , its value, V ,

would be
V ≡ E [U (x̃)] =

∑n

i=1
piUi

where Ui is the utility associated with payoff xi .

He hypothesized that Ui is diminishingly increasing in wealth.
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Criterion: Expected Utility

Von Neumann and Morgenstern (1944) derived conditions on
an individual’s preferences that, if satisfied, would make them
consistent with an expected utility function.

Define a lottery as an asset that has a risky payoff and
consider an individual’s optimal choice of a lottery from a
given set of different lotteries. The possible payoffs of all
lotteries are contained in the set {x1, ..., xn}.
A lottery is characterized by an ordered set of probabilities

P = {p1, ..., pn}, where of course,
n∑
i=1
pi = 1 and pi ≥ 0. Let a

different lottery be P∗ = {p∗1 , ..., p∗n}. Let �, ≺, and ∼
denote preference and indifference between lotteries.
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Preferences Over Different Random Payoffs

Specifically, if an individual prefers lottery P∗ to lottery P,
this can be denoted as P∗ � P or P ≺ P∗.

When the individual is indifferent between the two lotteries,
this is written as P∗ ∼ P.

If an individual prefers lottery P∗ to lottery P or she is
indifferent between lotteries P∗ and P, this is written as
P∗ � P or P � P∗.

N.B.: all lotteries have the same payoff set {x1, ..., xn}, so we
focus on the (different) probability sets P and P∗.
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Expected Utility Axioms 1-3

Theorem: There exists an expected utility function
V (p1, ..., pn) if the following axioms hold:

Axioms:
1) Completeness
For any two lotteries P∗ and P, either P∗ � P, or P∗ ≺ P, or
P∗ ∼ P.
2) Transitivity
If P∗∗ � P∗and P∗ � P, then P∗∗ � P.
3) Continuity
If P∗∗ � P∗ � P, there exists some λ ∈ [0, 1] such that
P∗ ∼ λP∗∗ + (1− λ)P, where λP∗∗ + (1− λ)P denotes a
“compound lottery”; namely, with probability λ one receives the
lottery P∗∗ and with probability (1− λ) one receives the lottery P.
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Expected Utility Axioms 4-5

4) Independence
For any two lotteries P and P∗, P∗ � P if and only if for all λ ∈
(0,1] and all P∗∗:

λP∗ + (1− λ)P∗∗ � λP + (1− λ)P∗∗

Moreover, for any two lotteries P and P†, P ∼ P† if and only if for
all λ ∈(0,1] and all P∗∗:

λP + (1− λ)P∗∗ ∼ λP† + (1− λ)P∗∗

5) Dominance
Let P1 be the compound lottery λ1P‡ + (1− λ1)P† and P2 be the
compound lottery λ2P‡ + (1− λ2)P†. If P‡ � P†, then P1 � P2 if
and only if λ1 > λ2.
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Discussion: Machina (1987)

The first three axioms are analogous to those used to establish
a real-valued utility function in consumer choice theory.

Axiom 4 (Independence) is novel, but its linearity property is
critical for preferences to be consistent with expected utility.

To understand its meaning, suppose an individual chooses P∗

� P. By Axiom 4, the choice between λP∗ + (1− λ)P∗∗ and
λP + (1− λ)P∗∗ is equivalent to tossing a coin that with
probability (1− λ) lands “tails,” in which both lotteries pay
P∗∗, and with probability λ lands “heads,” in which case the
individual should prefer P∗ to P.
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Allais Paradox

But, there is some experimental evidence counter to this
axiom.

Consider lotteries over {x1, x2, x3} = {$0, $1m, $5m} and two
lottery choices:
C1: P1 = {0, 1, 0} vs P2 = {.01, .89, .1}
C2: P3 = {.9, 0, .1} vs P4 = {.89, .11, 0}

Which do you choose in C1? In C2?
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Allais Paradox

Experimental evidence suggests most people prefer P1 � P2
and P3 � P4.

But this violates Axiom 4. Why?

Define P5 = {1/11, 0, 10/11} and let λ = 0.11. Note that P2

is equivalent to the compound lottery:

P2 ∼ λP5 + (1− λ)P1

∼ 0.11{1/11, 0, 10/11}+ 0.89{0, 1, 0}
∼ {.01, .89, .1}
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Allais Paradox

Note also that P1 is trivially the compound lottery
λP1 + (1− λ)P1. Hence, if P1 � P2, the independence
axiom implies P1 � P5.
Now also define P6 = {1, 0, 0}, and note that P3 equals the
following compound lottery:

P3 ∼ λP5 + (1− λ)P6

∼ 0.11{1/11, 0, 10/11}+ 0.89{1, 0, 0}
∼ {.9, 0, .1}

while P4 is equivalent to the compound lottery

P4 ∼ λP1 + (1− λ)P6

∼ 0.11{0, 1, 0}+ 0.89{1, 0, 0}
∼ {.89, 0.11, 0}
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Allais Paradox

But if P3 � P4, the independence axiom implies P5 � P1,
which contradicts the choice of P1 � P2 that implies
P1 � P5.

Despite the sometimes contradictory experimental evidence,
expected utility is still the dominant paradigm.

However, we will consider different models of utility at a later
date, including those that reflect psychological biases.
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Deriving Expected Utility: Axiom 1

We now prove the theorem by showing that if an individual’s
preferences over lotteries satisfy the preceding axioms, these
preferences can be ranked by the individual’s expected utility
of the lotteries.

Define an “elementary”or “primitive” lottery, ei , which
returns outcome xi with probability 1 and all other outcomes
with probability zero, that is, ei = {p1, ...pi−1, pi , pi+1..., pn}
= {0, ...0, 1, 0, ...0} where pi = 1 and pj = 0 ∀j 6= i .

Without loss of generality, assume that the outcomes are
ordered such that en � en−1 � ... � e1. This follows from the
completeness axiom for this case of n elementary lotteries
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Deriving Expected Utility: Axiom 3, Axiom 4

From the continuity axiom, for each ei , there exists a
Ui ∈ [0, 1] such that

ei ∼ Uien + (1− Ui )e1 (2)

and for i = 1, this implies U1 = 0 and for i = n, this implies
Un = 1.

Now a given arbitrary lottery, P = {p1, ..., pn}, can be viewed
as a compound lottery over the n elementary lotteries, where
elementary lottery ei is obtained with probability pi .

P ∼ p1e1 + ...+ pnen

George Pennacchi University of Illinois

Expected utility and risk aversion 17/ 60



1.1: Preferences 1.2: Risk Premia 1.3: Portfolio Choice 1.4: Conclusions

Deriving Expected Utility: Axiom 4

By the independence axiom, and equation (2), the individual
is indifferent between lottery, P, and the following lottery:

p1e1 + ...+ pnen ∼ p1e1 + ...+ pi−1ei−1 + pi [Uien + (1− Ui )e1]
+pi+1ei+1 + ...+ pnen (3)

where the indifference relation in equation (2) substitutes for
ei on the right-hand side of (3).

By repeating this substitution for all i , i = 1, ..., n, the
individual will be indifferent between P and

p1e1 + ...+ pnen ∼
(

n∑
i=1

piUi

)
en +

(
1−

n∑
i=1

piUi

)
e1 (4)
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Deriving Expected Utility: Axiom 5

Now define Λ ≡
n∑
i=1

piUi . Thus, P ∼ Λen + (1− Λ)e1

Similarly, we can show that any other arbitrary lottery

P∗ = {p∗1 , ..., p∗n} ∼ Λ∗en + (1− Λ∗)e1, where Λ∗ ≡
n∑
i=1

p∗i Ui .

We know from the dominance axiom that P∗ � P iff Λ∗ > Λ,

implying
n∑
i=1
p∗i Ui >

n∑
i=1
piUi .

So we can define the function

V (p1, ..., pn) =
n∑
i=1

piUi (5)

which implies that P∗ � P iff V (p∗1 , ..., p
∗
n) > V (p1, ..., pn).
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Deriving Expected Utility: The End

The function in (5) is known as von Neumann-Morgenstern
expected utility. It is linear in the probabilities and is unique
up to a linear monotonic transformation.

The intuition for why expected utility is unique up to a linear
transformation comes from equation (2). Here we express
elementary lottery i in terms of the least and most preferred
elementary lotteries. However, other bases for ranking a given
lottery are possible.

For Ui = U(xi ), an individual’s choice over lotteries is the
same under the transformation aU(xi ) + b, but not a
nonlinear transformation that changes the “shape”of U(xi ).
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St. Petersburg Paradox Revisited

Suppose Ui = U(xi ) =
√
xi . Then the expected utility of the

St. Petersburg payoff is

V =
n∑
i=1

piUi =
∞∑
i=1

1
2i
√
2i−1 =

∞∑
i=1

2−
1
2 (i+1) =

∞∑
i=2

2−
i
2

= 2−
2
2 + 2−

3
2 + ...

=
∞∑
i=0

(
1√
2

)i
− 1− 1√

2
=

1
1− 1√

2

− 1− 1√
2

=
1

2−
√
2
∼= 1.707

A certain payment of 1.7072 ∼= 2.914 ducats has the same
expected utility as playing the St. Petersburg game.
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Super St. Petersburg

The St. Petersburg game has infinite expected payoff because
the probability of winning declines at rate 2i , while the
winning payoff increases at rate 2i .
In a “super”St. Petersburg paradox, we can make the
winning payoff increase at a rate xi = U−1(2i−1) to cause
expected utility to increase at 2i . For square-root utility,
xi = (2i2)2 = 22i−2; that is, x1 = 1, x2 = 4, x3 = 16, and so
on. The expected utility of “super”St. Petersburg is

V =
n∑
i=1

piUi =
∞∑
i=1

1
2i
√
22i−2 =

∞∑
i=1

1
2i
2i−1 =∞ (6)

Should we be concerned that if prizes grow quickly enough,
we can get infinite expected utility (and valuations) for any
chosen form of expected utility function?
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Von Neumann-Morgenstern Utility

The von Neumann-Morgenstern expected utility can be
generalized to a continuum of outcomes and lotteries with
continuous probability distributions. Analogous to equation
(5) is

V (F ) = E [U (x̃)] =

∫
U (x) dF (x) =

∫
U (x) f (x) dx (7)

where F (x) is the lottery’s cumulative distribution function
over the payoffs, x . V can be written in terms of the
probability density, f (x), when F (x) is absolutely continuous.

This is analogous to our previous lottery represented by the
discrete probabilities P = {p1, ..., pn}.

George Pennacchi University of Illinois

Expected utility and risk aversion 23/ 60



1.1: Preferences 1.2: Risk Premia 1.3: Portfolio Choice 1.4: Conclusions

Risk Aversion

Diminishing marginal utility results in risk aversion: being
unwilling to accept a “fair” lottery. Why?
Let there be a lottery that has a random payoff, ε̃, where

ε̃ =

{
ε1with probability p
ε2 with probability 1− p

(8)

The requirement that it be a “fair” lottery restricts its
expected value to equal zero:

E [̃ε] = pε1 + (1− p)ε2 = 0 (9)

which implies ε1/ε2 = − (1− p) /p, or solving for p,
p = −ε2/ (ε1 − ε2). Since 0 < p < 1, ε1 and ε2 are of
opposite signs.
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Risk Aversion and Concave Utility

Suppose a vN-M maximizer with current wealth W is offered
a fair lottery. Would he accept it?
With the lottery, expected utility is E [U (W + ε̃)]. Without
it, expected utility is E [U (W )] = U (W ). Rejecting it implies

U (W ) > E [U (W + ε̃)] = pU (W + ε1) + (1− p)U (W + ε2)
(10)

U (W ) can be written as

U(W ) = U (W + pε1 + (1− p)ε2) (11)

Substituting into (10), we have

U (W + pε1 + (1− p)ε2) > pU (W + ε1)+(1−p)U (W + ε2)
(12)

which is the definition of U being a concave function.
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Risk Aversion ⇔ Concavity

A function is concave if a line joining any two points lies
entirely below the function. When U(W ) is a continuous,
second differentiable function, concavity implies U ′′(W ) < 0.
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Risk Aversion ⇔ Concavity

To show that concave utility implies rejecting a fair lottery, we
can use Jensen’s inequality which says that for concave U(·)

E [U(x̃)] < U(E [x̃ ]) (13)

Therefore, substituting x̃ = W + ε̃ with E [̃ε] = 0, we have

E [U(W + ε̃)] < U (E [W + ε̃]) = U(W ) (14)

which is the desired result.
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Risk Aversion and Risk Premium

How might aversion to risk be quantified? One way is to
define a risk premium as the amount that an individual is
willing to pay to avoid a risk.
Let π denote the individual’s risk premium for a lottery, ε̃. π
is the maximum insurance payment an individual would pay to
avoid the lottery risk:

U(W − π) = E [U(W + ε̃)] (15)

W − π is defined as the certainty equivalent level of wealth
associated with the lottery, ε̃.
For concave utility, Jensen’s inequality implies π > 0 when ε̃ is
fair: the individual would accept wealth lower than her
expected wealth following the lottery, E [W + ε̃], to avoid the
lottery.
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Risk Premium

For small ε̃ we can take a Taylor approximation of equation
(15) around ε̃ = 0 and π = 0.

Expanding the left-hand side about π = 0 gives

U(W − π) ∼= U(W )− πU ′(W ) (16)

and expanding the right-hand side about ε̃ gives

E [U(W + ε̃)] ∼= E
[
U(W ) + ε̃U ′(W ) + 1

2 ε̃
2U ′′(W )

]
(17)

= U(W ) + 0+ 1
2σ

2U ′′(W )

where σ2 ≡ E
[
ε̃2
]
is the lottery’s variance.
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Risk Premium cont’d

Equating the results in (16) and (17) gives

π = − 12σ
2U
′′(W )

U ′(W )
≡ 1

2σ
2R(W ) (18)

where R(W ) ≡ −U ′′(W )/U ′(W ) is the Pratt (1964)-Arrow
(1971) measure of absolute risk aversion.

Since σ2 > 0, U ′(W ) > 0, and U ′′(W ) < 0, concavity of the
utility function ensures that π must be positive

An individual may be very risk averse (−U ′′(W ) is large), but
may be unwilling to pay a large risk premium if he is poor
since his marginal utility U ′(W ) is high.

George Pennacchi University of Illinois

Expected utility and risk aversion 30/ 60



1.1: Preferences 1.2: Risk Premia 1.3: Portfolio Choice 1.4: Conclusions

−U ′′(W ) and U ′(W )

Consider the following negative exponential utility function:

U(W ) = −e−bW , b > 0 (19)

Note that U ′(W ) = be−bW > 0 and
U ′′(W ) = −b2e−bW < 0.
Consider the behavior of a very wealthy individual whose
wealth approaches infinity

lim
W→∞

U ′(W ) = lim
W→∞

U ′′(W ) = 0 (20)

There’s no concavity, so is there no risk aversion?

R(W ) =
b2e−bW

be−bW
= b (21)
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Absolute Risk Aversion: Dollar Payment for Risk

We see that negative exponential utility, U(W ) = −e−bW ,
has constant absolute risk aversion.

If, instead, we want absolute risk aversion to decline in wealth,
a necessary condition is that the utility function must have a
positive third derivative:

∂R(W )

∂W
=
∂ − U ′′(W )

U ′(W )

∂W
= −U

′′′(W )U ′(W )− [U ′′(W )]2

[U ′(W )]2

(22)
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R(W )⇒ U(W )

The coeffi cient of risk aversion contains all relevant
information about the individual’s risk preferences. Note that

R(W ) = −U
′′(W )

U ′(W )
= −∂ (ln [U ′(W )])

∂W
(23)

Integrating both sides of (23), we have

−
∫
R(W )dW = ln[U ′(W )] + c1 (24)

where c1 is an arbitrary constant. Taking the exponential
function of (24) gives

e−
∫
R(W )dW = U ′(W )ec1 (25)
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R(W )⇒ U(W ) cont’d

Integrating once again, we obtain∫
e−

∫
R(W )dW dW = ec1U(W ) + c2 (26)

where c2 is another arbitrary constant.

Because vN-M expected utility functions are unique up to a
linear transformation, ec1U(W ) + c2 reflects the same risk
preferences as U(W ).
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Relative Risk Aversion

Relative risk aversion is another frequently used measure
defined as

Rr (W ) = WR(W ) (27)

Consider risk aversion for some utility functions often used in
models of portfolio choice and asset pricing. Power utility can
be written as

U(W ) = 1
γW

γ , γ < 1 (28)

implying that R(W ) = − (γ−1)W
γ−2

W γ−1 = (1−γ)
W and, therefore,

Rr (W ) = 1− γ.
Hence, it displays constant relative risk aversion.
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Logarithmic Utility: Constant Relative Risk Aversion

Logarithmic utility is a limiting case of power utility. Since
utility functions are unique up to a linear transformation, write
the power utility function as

1
γW

γ − 1
γ

=
W γ − 1

γ

Next take its limit as γ → 0. Do so by rewriting the
numerator and applying L’Hôpital’s rule:

lim
γ→0

W γ − 1
γ

= lim
γ→0

eγ ln(W ) − 1
γ

= lim
γ→0

ln(W )W γ

1
= ln(W )

(29)
Thus, logarithmic utility is power utility with coeffi cient of
relative risk aversion (1− γ) = 1 since R(W ) = −W −2W −1 = 1

W
and Rr (W ) = 1.
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HARA: Power, Log, Quadratic

Hyperbolic absolute-risk-aversion (HARA) utility generalizes
all of the previous utility functions:

U(W ) =
1− γ
γ

(
αW
1− γ + β

)γ
(30)

s.t. γ 6= 1, α > 0, αW1−γ + β > 0, and β = 1 if γ = −∞.

Thus, R(W ) =
(
W
1−γ + β

α

)−1
. Since R(W ) must be > 0, it

implies β > 0 when γ > 1. Rr (W ) = W
(
W
1−γ + β

α

)−1
.

HARA utility nests constant absolute risk aversion (γ = −∞,
β = 1), constant relative risk aversion (γ < 1, β = 0), and
quadratic (γ = 2) utility functions.
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Another Look at the Risk Premium

A premium to avoid risk is fine for insurance, but we may also
be interested in a premium to bear risk.

This alternative concept of a risk premium was used by Arrow
(1971), identical to the earlier one by Pratt (1964).

Suppose that a fair lottery ε̃, has the following payoffs and
probabilities:

ε̃ =

{
+ε with probability 1

2
−ε with probability 1

2
(31)

How much do we need to deviate from “fairness” to make a
risk-averse individual indifferent to this lottery?
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Risk Premium v2

Let’s define a risk premium, θ, in terms of the probability of
winning, p, minus the probability of losing, 1− p:

θ = Prob(win)− Prob(lose) = p − (1− p) = 2p − 1 (32)

Therefore, from (32) we have

Prob(win) ≡ p = 1
2 (1+ θ)

Prob(lose) = 1− p = 1
2 (1− θ)

We want θ that equalizes the utilities of taking and not taking
the lottery:

U(W ) =
1
2

(1+ θ)U(W + ε) +
1
2

(1− θ)U(W − ε) (33)
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Risk Aversion (again)

Let’s again take a Taylor approximation of the right side,
around ε = 0

U(W ) =
1
2

(1+ θ)
[
U(W ) + εU ′(W ) + 1

2 ε
2U ′′(W )

]
(34)

+
1
2

(1− θ)
[
U(W )− εU ′(W ) + 1

2 ε
2U ′′(W )

]
= U(W ) + εθU ′(W ) + 1

2 ε
2U ′′(W )

Rearranging (34) implies

θ = 1
2 εR(W ) (35)

which, as before, is a function of the coeffi cient of absolute
risk aversion.
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Risk Aversion (again)

Note that the Arrow premium, θ, is in terms of a probability,
while the Pratt measure, π, is in units of a monetary payment.

If we multiply θ by the monetary payment received, ε, then
equation (35) becomes

εθ = 1
2 ε
2R(W ) (36)

Since ε2 is the variance of the random payoff, ε̃, equation (36)
shows that the Pratt and Arrow risk premia are equivalent.
Both were obtained as a linearization of the true function
around ε̃ = 0.
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A Simple Portfolio Choice Problem

Let’s consider an individual’s single-period portfolio choice
problem.
Assume there is a riskless security that pays a rate of return
equal to rf and just one risky security that pays a random rate
of return equal to r̃ .
Also, let W0 be the individual’s initial wealth, and let A be the
monetary amount that the individual invests in the risky asset
at the beginning of the period. Thus, W0 − A is the initial
investment in the riskless security.
The individual’s end-of-period wealth, W̃ , is given by:

W̃ = (W0 − A)(1+ rf ) + A(1+ r̃) (37)

= W0(1+ rf ) + A(r̃ − rf )
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Single Period Utility Maximization

The individual chooses A to maximize expected utility that is
increasing and concave in end-of-period wealth:

max
A
E [U(W̃ )] = max

A
E [U (W0(1+ rf ) + A(r̃ − rf ))] (38)

The first-order condition with respect to A is:

E
[
U ′
(
W̃
)

(r̃ − rf )
]

= 0 (39)

Note that the second order condition

E
[
U ′′
(
W̃
)

(r̃ − rf )2
]
≤ 0 (40)

is satisfied because U ′′
(
W̃
)
≤ 0 from concavity.
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Obtaining A∗ from FOC

Suppose E [r̃ ] = rf . Then we can show A=0 is the solution.

If A=0, then W̃ = W0 (1+ rf ) so that

U ′
(
W̃
)

= U ′ (W0 (1+ rf )) is nonstochastic. Hence,

E
[
U ′
(
W̃
)

(r̃ − rf )
]

= U ′ (W0 (1+ rf ))E [r̃ − rf ] = 0.

Next, suppose E [r̃ ] > rf .

A = 0 is not a solution because E
[
U ′
(
W̃
)

(r̃ − rf )
]

=

U ′ (W0 (1+ rf ))E [r̃ − rf ] > 0 when A = 0.

Thus, when E [r̃ ]− rf > 0, let’s show that A > 0.
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Why must A > 0?

Let rh denote a realization of r̃ > rf , and let W h be the
corresponding level of W̃

Also, let r l denote a realization of r̃ < rf , and let W l be the
corresponding level of W̃ .

Then U ′(W h)(rh − rf ) > 0 and U ′(W l )(r l − rf ) < 0.

For U ′
(
W̃
)

(r̃ − rf ) to average to zero for all realizations of

r̃ , it must be that W h >W l so that U ′
(
W h
)
< U ′

(
W l
)
due

to the concavity of the utility function.

Why? Since E [r̃ ] > rf , the average rh is farther above rf than
the average r l is below rf . To preserve (39), the multipliers
must satisfy U ′

(
W h
)
< U ′

(
W l
)
to compensate, which

occurs when W h >W l and which requires that A > 0.
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Distribution of Returns

When E [̃r ] > rf , there is more probability mass for rh than r l .
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Concave Utility

When E [̃r ] > rf , need U ′
(
W h
)
< U ′

(
W l
)
for

E
[
U ′
(
W̃
)

(r̃ − rf )
]

= 0.
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How does optimal A change with initial wealth, W0?

Let us use implicit differentiation to obtain dA(W0)
dW0

.

Define f (A,W0) ≡ E
[
U
(
W̃
)]
, and let maximized expected

utility when A is optimally chosen be v (W0) = max
A
f (A,W0).

Also define A (W0) as the value of A that maximizes f for a
given initial wealth, W0.

Using the chain rule, the total derivative of v (W0) with
respect to W0 is

dv (W0)
dW0

= ∂f (A,W0)
∂A

dA(W0)
dW0

+ ∂f (A(W0),W0)
∂W0

.
∂f (A,W0)

∂A = 0 since it is the first-order condition for a
maximum.
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How does A change wrt W0 cont’d

The total derivative simplifies to dv (W0)
dW0

= ∂f (A(W0),W0)
∂W0

,
implying that the maximized objective function with respect
to a parameter is just the partial derivative with respect to
that parameter.

Second, consider how the optimal value of the control
variable, A (W0), changes when the parameter W0 changes.

We do so by taking the total derivative of the F.O.C. (39),
∂f (A (W0) ,W0) /∂A = 0, with respect to W0:

∂(∂f (A(W0),W0)/∂A)
∂W0

= 0 =∂2f (A(W0),W0)
∂A2

dA(W0)
dW0

+∂2f (A(W0),W0)
∂A∂W0

George Pennacchi University of Illinois

Expected utility and risk aversion 49/ 60



1.1: Preferences 1.2: Risk Premia 1.3: Portfolio Choice 1.4: Conclusions

How does A change wrt W0 cont’d

Rearranging the above gives us

dA (W0)

dW0
= −∂

2f (A (W0) ,W0)

∂A∂W0
/
∂2f (A (W0) ,W0)

∂A2
(41)

We can then evaluate it to obtain

dA
dW0

=
(1+ rf )E

[
U ′′(W̃ )(r̃ − rf )

]
−E

[
U ′′(W̃ )(r̃ − rf )2

] (42)

The denominator of (42) is positive because of concavity, so
the sign of dA

dW0
depends on the numerator.
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Implications for dA
dW0

with DARA

Consider an individual with absolute risk aversion that is
decreasing in wealth. Assuming E [r̃ ] > rf so that A > 0:

R
(
W h
)
< R (W0(1+ rf )) (43)

where, as before, R(W ) = −U ′′(W )/U ′(W ).
Multiplying both sides of (43) by −U ′(W h)(rh − rf ), which is
a negative quantity, the inequality sign reverses:

U ′′(W h)(rh − rf ) > −U ′(W h)(rh − rf )R (W0(1+ rf )) (44)

Then for A > 0, we have W l <W0(1+ rf ). If absolute risk
aversion is decreasing in wealth, this implies

R(W l ) > R (W0(1+ rf )) (45)
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Implications for dA
dW0

with DARA

Multiplying (45) by −U ′(W l )(r l − rf ), which is positive,
inequality (45) becomes

U ′′(W l )(r l − rf ) > −U ′(W l )(r l − rf )R (W0(1+ rf )) (46)

Inequalities (44) and (46) are the same whether the
realization is r̃ = rh or r̃ = r l , so taking expectations over all
realizations of r̃ implies

E
[
U ′′(W̃ )(r̃ − rf )

]
> −E

[
U ′(W̃ )(r̃ − rf )

]
R (W0(1+ rf ))

(47)

The first term on the right-hand side is just the FOC.
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Implications for risk-taking with ARA/RRA

Therefore, inequality (47) reduces to

E
[
U ′′(W̃ )(r̃ − rf )

]
> 0 (48)

Thus, DARA ⇒ dA/dW0 > 0: A increases with initial wealth.

What about the proportion of initial wealth? To analyze this,
define

η ≡
dA
dW0
A
W0

=
dA
dW0

W0

A
(49)

which is the elasticity measuring the proportional increase in
the risky asset for an increase in initial wealth.
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Implications for risk-taking with RRA

Adding 1− A
A to the right-hand side of (49) gives

η = 1+
(dA/dW0)W0 − A

A
(50)

Substituting dA/dW0 from equation (42), we have

η = 1+
W0(1+ rf )E

[
U ′′(W̃ )(r̃ − rf )

]
+ AE

[
U ′′(W̃ )(r̃ − rf )2

]
−AE

[
U ′′(W̃ )(r̃ − rf )2

]
(51)

Collecting terms in U ′′(W̃ )(r̃ − rf ), this can be rewritten as
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Implications for risk-taking with RRA

η = 1+
E
[
U ′′(W̃ )(r̃ − rf ){W0(1+ rf ) + A(r̃ − rf )}

]
−AE

[
U ′′(W̃ )(r̃ − rf )2

] (52)

= 1+
E
[
U ′′(W̃ )(r̃ − rf )W̃

]
−AE

[
U ′′(W̃ )(r̃ − rf )2

] (53)

The denominator in (53) is positive for A > 0 by concavity.

Therefore, if E
[
U ′′(W̃ )(r̃ − rf )W̃

]
> 0 then η > 1 and the

individual invests proportionally more in the risky asset with
an increase in wealth.
Can we relate this to the individual’s risk aversion?
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Implications for risk-taking with DRRA

Consider an individual whose relative risk aversion is
decreasing in wealth.

Then for A > 0, we again have W h >W0(1+ rf ). When
Rr (W ) ≡WR(W ) is decreasing in wealth, this implies

W hR(W h) <W0(1+ rf )R (W0(1+ rf )) (54)

Multiplying both sides of (54) by −U ′(W h)(rh − rf ), which is
a negative quantity, the inequality sign reverses:

W hU ′′(W h)(rh−rf ) > −U ′(W h)(rh−rf )W0(1+rf )R (W0(1+ rf ))
(55)
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Implications for risk-taking with DRRA

For A > 0, we have W l <W0(1+ rf ). If relative risk aversion
is decreasing in wealth, this implies

W lR(W l ) >W0(1+ rf )R (W0(1+ rf )) (56)

Multiplying (56) by −U ′(W l )(r l − rf ), which is positive, it
equals

W lU ′′(W l )(r l−rf ) > −U ′(W l )(r l−rf )W0(1+rf )R (W0(1+ rf ))
(57)

Inequalities (55) and (57) are the same whether the
realization is r̃ = rh or r̃ = r l .

Next, take expectations over all realizations of r̃ to obtain
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Implications for risk-taking with DRRA

E
[
W̃U ′′(W̃ )(r̃ − rf )

]
> −E

[
U ′(W̃ )(r̃ − rf )

]
W0(1+rf )R(W0(1+rf ))

(58)

Since the first term on the right-hand side of inequality (58) is
the FOC, the inequality simplifies to

E
[
W̃U ′′(W̃ )(r̃ − rf )

]
> 0 (59)

Hence, decreasing relative risk aversion implies η > 1 so an
individual invests proportionally more in the risky asset as
wealth increases.
The opposite is true for increasing relative risk aversion: η < 1
so that this individual invests proportionally less in the risky
asset as wealth increases.
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Risk-taking with ARA/RRA

The main results of this section can be summarized as:

Risk Aversion Investment Behavior
Decreasing Absolute ∂A

∂W0
> 0

Constant Absolute ∂A
∂W0

= 0
Increasing Absolute ∂A

∂W0
< 0

Decreasing Relative ∂A
∂W0

> A
W0

Constant Relative ∂A
∂W0

= A
W0

Increasing Relative ∂A
∂W0

< A
W0
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Conclusions

We have shown:

— Why expected utility, rather than expected value, is a better
criterion for choosing and valuing assets.

— What conditions preferences can satisfy to be represented by
an expected utility function.

— The relationship between a utility function, U(W ), and risk
aversion.

— How ARA/RRA affects the choice between risky and risk-free
assets.
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